Steyr MPi 81

Developed in the late 1960s and introduced in 1969/70 the MPi 69 was Steyr’s entry into an already crowded European submachine gun market. Heavily influenced by the Israeli Uzi it had a bolt which telescoped over the barrel and fed from a box magazine that was inserted through a magazine well-come-pistol grip.

The MPi 69 weighed 6.5lbs (2.93kg) unloaded and had a polymer lower receiver into which a stamped metal upper inserted. Unlike the Uzi it had a collapsing, rather than folding stock, similar to the M3 submachine gun’s, and was cocked not by a handle but by pulling the sling (which was acted on the bolt) to the rear.

Steyr Mpi61 b.png
Steyr MPi 69 (Rock Island Auction Company)

The MPi 69 remained in production into the early 1980s when it was replaced by the improved MPi 81. Moving away from the slick-cocking ‘gimmick’ the MPi 81 had a conventional, non-reciprocating, charging handle on the left side of the receiver. The MPi’s polymer lower allows it to be a pound lighter despite being slightly longer as a result it also balances better than the standard Uzi carbine.

ffdgfdgdfg.png
Steyr MPi 69 diagram (Steyr Manual)

The MPi submachine guns fed from 25 or 32 round box magazines and both guns had a heel-type magazine release paddle in the base of the pistol grip. They also shared their magazines with the AUG 9x19mm submachine gun conversion. Check out our earlier video on the Steyr AUG conversion here.

steyr mpi2.png
Steyr MPi 81 (Rock Island Auction Company)

The MPi submachine guns fire from an open bolt and had a 10in barrel and has a push through safety with settings for safe, semi and full auto and unlike the Uzi it does not have a grip safety – simplifying manufacture.

The MPi also has a progressive trigger which when set to full-auto will allow the user to fire semi when pulled to the first stage and full when pulled fully to the rear. While the MPi 69 had a cyclic rate of around 500 per minute, the MPi 81 increased this rate to ~750rpm.

22222222222222222.png
Steyr MPi 69 disassembly diagram (Steyr Manual)

The MPi can be field stripped by simply rotating the receiver end cap up 90-degrees and pulling the bolt out the rear. The gun can be further stripped but the moulded polymer lower receiver can be difficult to remove from the upper. Like the Uzi the barrel nut is unscrewed to remove the barrel.

Steyr MPi81.Movie_Snapshot.jpg
The MPi 81 fully disassembled (Vic Tuff)

It is unclear just how many MPi submachine guns were produced but they didn’t see any significant contracts beyond a few small sales to police forces and militaries.

The MPi 81 remained in production into the early 1990s when it was replaced by the smaller and more compact Steyr TMP in 1992. In turn the TMP design was sold to B&T a decade later.

Our thanks to the collection that let us take a look at this MPi 81 and to our friend Miles Vining for sharing some of his shooting footage of the MPi 81 with us, check out his video here and more of his work at www.silahreport.com.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Specifications (from Steyr brochure):

Overall Length: Deployed – 26.6in (67.5cm) / Collapsed – 18.3in (46.5cm)
Barrel Length: 10.2in (26cm)
Weight (empty): 6.28lbs (2.85kg)
Action: Blowback
Capacity: 25 or 32-round box magazines
Calibre: 9×19mm
Rate of Fire: ~750 rpm


Bibliography:

Steyr MPi 69 Manual (source)

Steyr MPi 81 Manual (source)

 

CETME L vs HK G41

In this week’s video we compare two of the last roller-delayed production rifles: the Spanish CETME Modelo L and the Heckler & Koch G41. These rifles represent the last evolutions of two strands of the roller-delayed development tree – the Spanish and the German.

cetme g41
The CETME L & HK G41 (Matthew Moss)

Both rifles use the roller-delayed blowback action and are both chambered in NATO SS109 5.56x45mm ball round, have have 1:7 twist barrels and feed from STANAG magazines. Both were developed during the 1980s and both are also capable of firing rifle grenades. 

The CETME L

left_h13_cetme_l
Left-side profile of the CETME L (Matthew Moss)

The CETME has a bit of a reputation for being cheap but this relatively unbattered example feels solid enough. Both of the rifles disassemble in much the same way with the butt assembly being removed to allow the bolt to be pulled out of the rear.

Most notable about the CETME’s bolt is the long rod protruding out the back of the bolt assembly. This acts on the recoil spring housed inside the butt. The L’s recoil spring, unlike the G41s, is captive inside the butt rather than nested inside the rear of the bolt carrier. The CETME’s bolt is also much squarer than the G41’s which probably simplified the machining of the bolt and designing the receiver stamping.

action_h13_cetme_l_1
The L’s bolt and butt assembly (Matthew Moss)

The L does not have a provision to lock its bolt back in a slot like the HK (no CETME slap for Spanish soldiers), however, it does have a bolt hold open, with the release located in the rear sight base.

The CETME has simpler folding aperture sights with 200–400m adjustments. It weighs in a 3.72kg or 8.2lbs unloaded and is 92.5cm or around 36in in length. The CETME has a simpler fire control group, with safe, semi and full-auto settings. It is not ambidextrous and only has a selector on the left side of the receiver. The CETME L has largely been replaced by the weapon that superseded the G41 – the gas-operated HK G36.

Heckler & Koch G41

left_h13_gewehr_41
The left-side profile of the G41 (Matthew Moss)

We have full article and video examining the G41 in detail here

HK finalised the G41’s design in 1979, a refinement of the 5.56x45mm HK33, it sought to modernise the platform and borrowed features from the M16 family of rifles including a bolt release catch, dust cover and forward assist.

The G41 has a butt assembly that fits into the receiver rather than around it. So its cross pins are at the top and bottom of the receiver rather than both at the bottom. This spreads the stresses on the receiver vertically rather than laterally.

g4 cetme l
Comparison of the G41 and Model L’s bolts (Matthew Moss)

The G41 has both the classic HK hold open notch and a AR-style paddle bolt release. HK’s dioptre drum sights have adjustments from 100 to 400m, and can mount a scope using an HK claw mount. G41 is the heavier of the two rifles, weighing in at 4.31kg or 9.5lbs. The G41 is also slightly longer than the L at nearly 100cm or 39in in length.

The HK has an ambidextrous selector with positions for safe, semi, 3-round burst and finally full-auto. The G41, unlike the L, also has a folding carrying handle near its point of balance.

The G41 represents the last evolution of HK’s infantry rifles using the roller-delayed blowback action. It comes from a period when HK were developing what they hoped would be the next generation of small arms technology and with the collapse of the G11 programme and the lack of sales of the G41 saw it superseded in the 1990s by the gas-operated G36.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters.

Nock Volley Gun

Commonly referred to as Nock Guns, the seven barrel volley guns were actually designed by James Wilson. Wilson presented his design to the Board of Ordnance for testing in July 1779. Following testing at Woolwich Arsenal the Board of Ordnance decided that the guns, while of no use to the Army, might be useful aboard the Royal Navy’s ships. The volley gun’s impressive firepower could be devastating at the relatively short ranges aboard ships. The Navy had historically used blunderbusses/musketoons and the Board of Ordnance probably viewed Wilson’s gun as an advancement of this concept. London gunmaker Henry Nock was given an order for two ‘seven barrelled rifle guns’ for Admiralty testing but these proved slow to load in action and subsequent guns had smoothbore barrels.

DSC_0262a
Right-side profile of the volley gun (Matthew Moss)

The Admiralty envisioned equipping first rate ships of the line (vessels with 75 guns or more) with 20 volley guns, while second and third rates would have 16 and 12 volley guns respectively, and frigates would carry 10 Nock guns. This represented a sizeable order. The Admiralty eventually purchased 500 guns, paying £13 per gun, to equip Royal Marines and sailors manning the fighting tops (at the top of ship’s masts). The Navy felt that the volley guns’ firepower would be useful when boarding enemy vessels or in repelling boarders by pouring down fire on enemy boarding parties.

DSC_0266 (1)
A close up of the gun’s muzzel-end, not also the ramrod which appears to have been lengthened at some point in its life  (Matthew Moss)

Henry Nock, better known for producing high quality duelling pistols and sporting guns, became the sole supplier of Wilson’s volley guns to the Royal Navy. The weapon’s 0.46 inch calibre outer barrels were arranged around the seventh centre barrel. The 51cm or 20in barrels were brazed together and screwed to an iron plate set into a walnut stock. The outer barrels had vents drilled through them to the central barrel while the central barrel had a vent leading from the lock. Once the flintlock ignited the powder charge in the central barrel, the surrounding barrels were ignited through the vents. As the vents had to be drilled with the barrels already brazed into position, the outer barrels all have plugged drill holes on their outer surfaces.

DSC_0264
A close up of the lock and the ‘H. NOCK’ makers mark (Matthew Moss)

All seven barrels fired almost at once producing significant recoil, reputedly able to dislocate shoulders. The service load was originally 2.5 drams of finer rifle powder (which I believe equals 68gr) for each barrel – totalling 476gr. Despite the gun weighing 12lbs, this did little to mitigate the weapon’s recoil and a reduced charge or 1.5 drams of standard musket powder was ordered.

The Board of Ordnance and the Admiralty granted Wilson an awarded of £400 (equal to £48,000 or $63,000 today) in May 1780. He played no further role in the testing and development of the volley gun. In 1787 the Navy ordered a further 100 guns from Nock.

DSC_0267a
Left-side profile of the Nock Gun (Matthew Moss)

Entering service just too late for service during the American War of Independence the first reported use of the guns came with Admiral Howe’s fleet at the siege of Gibraltar in 1782. They continued to be carried aboard other vessels during the 1790s, but few accounts refer to them and little is known about their service.

Howard Blackmore suggests that naval officers, including Admiral Nelson who disliked placing marksmen in his tops, disliked the guns. There were some fears that the volley guns’ wads could set the ships sails and rigging on fire. Reputedly it was also not uncommon for some of the volley gun’s barrels to fail to ignite. As a result the guns were seldom used on board ships and removed from Royal Navy service in 1804. In 1805, Wilson, then a captain of the Marines suggested the Navy reissue the guns to the Sea Fencibles, a naval militia which helped defend the British coast, however, his recommendation was not followed up.

large_A3018_8
The early (top) and later (bottom) patterns of Nock volley gun (Royal Armouries)

This particular example has the second pattern of lock used on the Nock guns with a smaller lock positioned a little lower on the gun. The earlier pattern was a back action lock, fitted high on the gun with the front of the lock plate in line with the side of the barrel.

The gun has a maker’s mark of ‘H. NOCK’ on the second barrel on the left and various barrel proof marks. Unlike other examples the lock itself isn’t Tower and ‘GR’/Crown cypher marked but does have the Ordnance Broad Arrow just behind the pan. Interestingly, the steel ramrod appears to have an extension brazed onto the end of it, this might indicate that the shorter rod used with the initial charge had to be extended when less powder was used for the lighter 1.5 dram load.

Why did the Nock Volley Guns fall out of favour?

As I mentioned earlier the recoil of the initial service load was significant, Howard Blackmore hypothesised that there may have also been some weakness to the lock springs leading to misfires. One key factor is that close quarters fighting aboard ships often relied on edged weapons like cutlasses, boarding axes and pikes. These paintings give us some feel for what fighting aboard a Napoleonic Man-of-War might have been like – a close, chaotic, terrifying affair.

Drummond, Boarding Party BHC1155
Boarding Party by D. Drummond, (National Maritime Museum)

While pistols were commonly used they were disposable and may not have been reloaded during a fight – more likely they were dropped or used as a club. The Nock Gun would have offered a devastating first volley, and while its 20 inch barrels would have given it better accuracy and range than a musketoon, how much of an impact a single volley of seven .32 bore projectiles would have had especially once the fighting became hand to hand is a matter for debate. At close quarters the Nock Gun quickly becomes a short, ill-balanced, 12lb club.

The Nock Volley Gun is perhaps best known for appearing in the Sharpe series of books and films as Sergeant Harper’s weapon of choice but it first appears on screen in the 1960 classic The Alamo with Richard Widmark’s Jim Bowie carrying one and more recently a fleeting, anachronistic, appearance in Master & Commander: Far Side of the World.

576c6f52614f00151316aec60b5a4b30
Richard Widmark as Jim Bowie in The Alamo (1960) with his pretty rough mocked-up Nock Gun

Despite a relatively short and undistinguished service life the Nock Volley Guns also saw some civilian sales with a number of ornate hunting guns with wooden forends, engraving, rifling and rear leaf sights.

3222585_1
A civilian Nock Volley Gun, note the rear sights, wooden forend and fine craftsmanship   (Cowan’s Auctions)

Later in 1818, Nock’s workshop manufactured a design by Artemus Wheeler, an American gun designer with a fondness for revolving guns.

Revolving Nock Carbine
A Nock-made rotating barrel carbine designed by Artemus Wheeler (Rock Island Auction Company)

Wheeler’s carbine resembles the earlier volley gun externally but is in fact a manually rotated, self-priming flintlock ‘pepperbox gun’ with six barrels arranged around a central axis. Unlike the earlier volley gun the pepperbox carbine was never trailed or purchased by the Admiralty. Henry Nock’s workshops produced approximately 655 volley guns between 1780 and 1788. The Nock Gun is a weapon that would greatly benefit from some in-depth contemporary research as the current best source is over 50 years old and relatively little is known about the gun’s service history.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters.


Specifications:

Calibre: .32 bore
Action: Muzzle-loading 7-barrel flintlock
Barrel  Length: 51.3cm/20in
Overall Length: 92.7cm/36.5in


Bibliography:

British Military Firearms 1650-1850, H. Blackmore (1961)

Centrifugal Machine Guns

Today, we’re going to take a look at a little known type of weapon which rose to prominence in around the time of the First World War with a number of examples being developed and some even tested. As you can see from this footage it’s something pretty unconventional, seen here mounted on the back of a truck – is a centrifugal machine gun.

I found this short footage while doing some digging through the online catalogue of the US National Archives. The centrifugal machine gun was not a new concept by the time this footage was filmed in the early 1920s, sadly the footage notes done give an exact date.

Centrifugal Machine Gun   111-h-1246-r1_HD_2Mbps_Trim_Moment - Copy.jpg

A still from footage of the demonstration (US National Archives)

While the technology had risen to a new prominence what was the allure of centrifugal machine guns? The principle of centrifugal force – an inertial force which appears to act on objects moving in a circular path, directs them away from the axis of rotation. As a result a centrifugal machine gun required no propellant powder to propel the projectile, or a case to contain it, nor a conventional rifled barrel to stabilise the projectile. Once released from the axis of rotation the projectile travels on a linear trajectory until it expends its energy. It works along the same principle as a primitive sling. The primary issue is providing power to exert the centrifugal force and a means of accurately firing the projectiles.

Some of the earliest work on centrifugal guns was done in the late 1850s in the US. The hand-crank or steam powered guns patented by William Joslin (US #24,031), C.B. Thayer patent for a ‘machine gun’ in August 1858 (US #21,109) and Charles S. Dickinson (US# 24,997) in 1859. Dickinson went on to secure financial backing from a wealthy Maryland industrialist Ross Winans and developed a steam powered version of his gun. Despite gaining much press attention Dickinson’s centrifugal gun saw no action during the US Civil War. In 1862 G.C. Eaton and S.W. Turner also patented a ‘machine gun’ (US #37,159).

Frank_Leslie's_Illustrated_Newspaper_-_1861-05-18_-_p1_-_Winans_Steam_Gun

An illustration of the Winans Steam Gun, Frank Leslie’s Illustrated Newspaper, May 1861

It wasn’t until World War One that the concept began to be considered again. In June 1918, Major Edward T. Moore and Saul Singer filed a patent for a centrifugal machine gun powered by an electrical motor (US #1,332,992). The motor spooled up the centrifugal barrel assembly to rotate extremely quickly and impart centrifugal force on projectiles. According to Julian Hatcher the gun could fire steel ball bearing projectiles at approximately 1,200 feet per second. Fire was controlled by a stop pin in the ammunition feed tube. Moore claimed the weapon could fire a projectile 1.5 miles with enough force to kill a man. He also suggested the weapon’s rate of fire approached 2,000 rounds per minute. It appears that Moore’s gun may have been tested in 1918 but Hatcher described its accuracy as ‘extremely poor’.

Moore Centrifugal Machine Gun from hatcher's

Photograph of Moore’s gun during testing (Hatcher)

Another centrifugal design developed during World War One was E.L. Rice’s half-inch centrifugal gun, sadly I’ve been unable to find any photographs or drawings of Rice’s design but the weapon was submitted to the US National Research Council in 1917. The NRC’s 1919 report states that the gun had been further developed by the NRC’s Physics Division in Pittsburgh but work had been slowed by “a common defect which has been difficult to eliminate”. Despite what the report described as ‘considerable headway’ the weapon was subsequently abandoned amid some controversy about credit for the design.

There seems to have been something of a centrifugal machine gun craze with several more patents filed between 1917 and 1926. A Scientific American article from March 1918, even noted that “every so often the daily press becomes enthused over a new centrifugal gun.”

US1223069-drawings-page-1

Porter’s Centrifugal Gun patent drawing (US Patent Office)

One of the earliest patents granted appear to have been for a design by E.E. Porter, granted in January 1917. This was followed in July 1919 by inventor, Herbert A. Bullard being granted a patent (US #1,311,492) on a design which fired a disc rather than a ball. At the same time T.A. Gannoe was granted a patent (US #1,309,129) for a large, complex looking gun shown mounted on a pedestal.

In 1920, F.R. Barnes (US #1,327,518) and W.W. Case (US #1,357,028) were also granted patents which had been filed in 1917. In late 1921, Levi Lombard was granted a patent he had filed in March 1918, his gun even appeared in Scientific American. It appears to be notably smaller than Moore’s gun and has a spade grip for aiming. This was followed in 1923, by an interesting patent from Joseph T. McNaier for a centrifugal gun that could be powered by an electric or petrol engine, some of the patent diagrams show how the gun might be placed in an armoured car or aeroplane (US #1,472,080). Intriguingly, McNaier and Moore appear to have known each other quite well and were partners in a law firm together.

Here’s a gallery of some of the various patents mentioned above, not all are as detailed or as advanced as others:

The question is which of these guns is featured in the footage. The most likely bets are the Moore or the Czegka. Sadly, with only a side view and just 18 seconds of footage we don’t have much to go on. The accompanying reel notes, describing what is seen in each section of the film, describes the gun as being in the “experimental stages only” and that the prototype seen here “is intended for use as aircraft armament, for tanks and for landing parties of the Front line trenches.”

Sadly, we don’t get to see how the gun works but we can see the operator feeding the ball bearing projectiles into the hopper which has a powered feed system – he empties two cylindrical containers of balls into it one after another. It is unclear how many rounds might be in the containers, perhaps 50 each. The gun and its motor are mounted on a truck bed with a soldier in uniform, possibly aiming the weapon via a tiller.

Another of the later designs dating from the period came from Victor Czegka, a US Marine Corps Technical Sergeant, who is perhaps best known as the supply officer of Admiral Richard Byrd’s first two expeditions to the Antarctic. Czegka was granted a patent for a centrifugal machine gun in January 1922 (US #1,404,378).

US1404378-drawings-page-1

Czegka’s 1922 patent (US Patent Office)

With some further digging I managed to find several articles referring to the gun in the US Army Ordnance Journal. Interestingly, a photo from the same demonstration is printed in one article, from late October 1920, with the caption confirming the man loading the weapon is the inventor, however, he isn’t named. The footage was filmed during the Second Annual Meeting of the US Army Ordnance Association. Another article dating from May 1921, also notes that the tests took place at Aberdeen Proving Ground, with the gun firing at 16,000 revolutions per minute which required 98 horsepower from the engine powering it. The gun apparently needed a “very rapid increase in power required for operation” when the speed of its revolutions was increased incrementally from 12,000 to 16,000 rpm. The article concluded that “a horsepower above 100 would have no material effect in increasing the speed” suggesting that a much more powerful, and therefore larger, engine would be needed to increase the revolution rate.

Unnamed Centrifugal Gun from 1922 Popular Mech

While researching I came across this set of images from a March 1922 edition of Popular Mechanics showing an unnamed centrifugal gun set up on a truck, powered by an engine on the truck bed. From the images it appears to be a gun similar to Moore’s with a single rotating ‘barrel’. The captions also note that the photographs were taken in New Jersey and Moore was a Major with the New Jersey National Guard, which may also indicate the gun is Moore’s.

Despite various designs seeing some US military testing none were ever adopted and relatively little information on them is available. It seems that they were relatively cumbersome weapons with extremely varying accuracy but this footage at least proves the concept. A short report in a may 1921 edition of Scientific American may shed some light, stating an unnamed gun was rejected “because of its great weight and its inability to obtain high initial velocity” concluding that “no centrifugal gun can have military value”. It appears that the range of the centrifugal guns was limited to the speed of their revolution, which in turn was limited by the power of the engine and motor that powered them. The larger the motor, the more cumbersome the weapon system was.

There are very few photos of centrifugal machine guns so stumbling across actual footage of one guns actually operating is very exciting. They are a fascinating tangent to the history of the machine gun – one that occasionally still garners interest.

Update

A viewer shared a Pathe Newsreel with us which included more footage from the same demonstration. The footage title suggests it dates from 1938, however, I believe this to be incorrect.

Despite the incorrect date the footage shows us the internals of the centrifugal gun and its aiming mechanism!

Here are few screen captures from the footage:

The gun’s hopper being loaded (Pathe)
A front view of the weapon, showing the slit from which projectiles fired through, and a better look at the operator’s face (Pathe)
The gun with its top cover and feed system removed showing the centrifugal barrel spinning up – a info card from the footage suggests it is spinning at 12,000 rpm (Pathe)

If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters.


Bibliography:

Demonstration of Ordnance Materiel at Aberdeen Proving Grounds, Maryland, 1920-26, US National Archives, (source)

Scientific American v.124, Jan-Jun 1921, (source)

Scientific American v.118, Jan-Jun 1918, (source)

Hatcher’s Notebook, J. Hatcher (1962)

Army Ordnance: The Journal of the Army Ordnance, v.1-2 (1920-1922) (source)

United States Congressional House Documents Vol.119, 1921 (source)

Winchester Select-Fire Garand Prototype

 

The Cody Firearms Museum, at the Buffalo Bill Centre of the West, holds a number of interesting select-fire M1 Garand rifles, adapted by Winchester during the 1940s. In this article we’re going to examine one of the prototypes, the rifle is believed to date to the late 1940s, and appears to be chambered in one of the earlier iterations of the T65 .30 Light Rifle round, which would eventually be adopted as 7.62x51mm.

Very little information is available about the rifle and little has been written about it previously. It is believed to have been developed by Winchester engineer Harry H. Sefried II with former Cody Firearms Museum curator Herbert Houze crediting Sefried with the rifle, which he described as adaptation of the M1 into a ‘squad automatic rifle’. After some archival research and combing Winchester’s patents from the period we can now attempt to shed light on a little more of the rifle’s history.

CFM photo
Winchester M1 Select-Fire prototype (Danny Michael/Cody Firearms Museum)

Externally, the rifle has a number of instantly recognisable distinctions from the standard M1 Garand. It has a reshaped stock with an added pistol grip, a proprietary box magazine and a combined bipod and conical flash hider. If we look closer we’ll notice that the stock has a swell just ahead of the breech, flaring out in an almost triangular bulge. These changes to the stock also distinguish this rifle from Winchester’s other select-fire M1 adaptations, which retain the standard Garand stock profile.

From the patents available combined with an examination of the rifle we can learn a lot. We cannot rely on patents to tell the whole story of the rifle, however, as many of the elements that make up the weapon appear to have gone unpatented. The substantial external and internal changes made to the rifle suggest that this was not an attempt to adapt the M1 with a minimal number of component parts changes but rather an effort to generally improve the rifle, making it conducive to fully automatic fire.

DSC_0231
Detail photo showing the rifle’s pistol grip, altered stock and magazine (Matthew Moss)

In summer 1944, Winchester’s CEO Edwin Pugsley directed Sefried to begin work on a select-fire conversion for the M1, to rival those being developed at Springfield Armory and Remington. Winchester’s select-fire Garand went though a number of iterations which resulted in two patents from Sefried. The first, filed in August 1944 (US #2479419), incorporated an elongated sear actuating lever and a selector on the lower, right side of the receiver. Winchester’s first attempts at a select-fire M1 conversion resulted in rifles with extremely high, uncontrollable rates of fire of over 900 rounds per minute. Sefried filed a second patent later in January 1948 (US #2464418) which used a catch to hook the sear. The rifle we are examining appears to have yet another select-fire system, one for which I have so far been unable to find a corresponding patent for. Winchester’s work on the select-fire adaptation came to a halt with the end of the war. It appears, however, that Winchester again began to work on adapting the M1 in the late 1940s, with Sefried again working on the project, filing his second select-fire mechanism patent in 1948 (US #2464418).

US2479419 sefrieds 1st patent
Sefried’s 1949 patent for another select-fire M1 conversion (US Patent Office)

The rifle’s receiver was originally a standard Winchester-made .30-06 M1 with a serial number of 1,627,456. This means its wartime production gun, dating from May 1945. It would appear that rather than the rifle being lifted from the rack finished, it seems that it was earmarked for prototype development because the receiver forging lacks the cuts/forgings needed for the en bloc clip release lever. This makes sense if it was known that the receiver was destined for use in a prototype which fed from a box magazine. However, the timeline of the rifle gets more complex when we consider that it was a late-war production rifle. There are a number of possibilities. The rifle may have been simply set aside for internal prototype work in May 1945 and not used until a T65 chambered rifle was developed later. Alternatively, it is possible that the rifle was converted during the initial attempts to create a select-fire M1 but was later rechambered from .30-06 to the new developmental T65 round.

This prototype’s trigger guard assembly, which also comprises the magazine well floorplate, is a self-contained assembly and does not interact with the weapon’s trigger mechanism or action. While Sefried had a patent for his own magazine system (US #2386722) this rifle uses a slightly different magazine release and floorplate, which is similar to one seen in Stefan Janson’s 1956 patent for a stripper clip-loading box magazine for the M1 (US #2894350). The magazine used in this prototype, however, is not the same as Janson’s. It has fixed feed-lips and a projection at its rear which appears to house an anti-tilt tab for the follower.

DSC_0234
The rifle’s magazine (Matthew Moss)

The rifle does not to appear to use the full-automatic system seen in either of Sefried’s patents.  Similarly, the safety selector is located on the left side of the receiver, forward, in line with the breech. It has two positions with an arc of about 90 degrees. This position does not match Sefried’s patents for select-fire conversion, however, it does match the position patented by David Marshall Williams but not Williams’ selector’s orientation of travel. I have been unable to find a patent which matches this rifle’s selector or method fully-automatic conversion.

DSC_0224
Left-side view of the rifle’s receiver showing the fire-selector (Matthew Moss)

The pistol grip is an interesting addition as neither of the other Winchester select-fire prototypes nor the original select-fire Springfield prototypes incorporated one. Visually it is very similar to that seen on the later Italian Beretta BM 59 Mark II.  In an effort to lighten the rifle the prototype also has an aluminium buttplate. One of ingenious internal changes is the milling of the bottom of the barrel flat, this not only has the effect of lightening the rifle but also allows a new, straight operating rod to travel rearwards under the barrel. How this impacted on the barrel’s harmonics is unclear. The rifle certainly feels lighter and handier (when unloaded) than you would expect, weight is estimated to be around 7 or 8 lbs.

 

The bipod, patented by Sefried in April 1945, (US #2420267) comprises a pair of tube steel legs, which have a set height, and a conical aluminium flash hider. The legs are spring-loaded and the entire assembly attaches via a latch which seats over the rifle’s bayonet lug. The bipod is the only element of this rifle that can be attributed to Sefried directly. And by the bipod’s very nature of attachment may simply have been attached later.

Sefried's April 1945 bipod and flash hider patent (US Patent Office)
Sefried’s 1947 patent for the bipod-flash hider (US Patent Office)

The best documentary source available for the prototype is the entry in the Winchester Factory Museum’s collection inventory offers some tantalising clues but no definitive answers:

#1504    U.S. Model M-1 rifle (Garand)
Cal. 30-06; experimental semi or full auto.
3rd type 20 shot box mag.
Special butt plate for shoulder rest
Bipod and aluminum flash hider attached
From H. Sefried 10-26-45

The suggestion that the rifle is chambered in .30-06 is seemingly an error given the internal changes made to the rifle. ‘3rd type’ suggests an iterative development of the rifle’s magazine while “special butt plate for shoulder rest” may allude to the aluminium butt plate but the prototype’s plate has nothing resembling a ‘shoulder rest’, instead it is a simple chequered aluminium plate about 5mm thick. While ‘From H. Sefried 10-26-45’ may refer to the whole rifle, I believe it more likely refers simply to his bipod.

DSC_0221
A close up of Sefried’s bipod-flash hider (Matthew Moss)

The prototype appears to be chambered in an iteration of the .30 Light Rifle round, which later became known as the T65. The rechambering was achieved by installing a metal block which shortened the magazine well. Unlike earlier Winchester select-fire conversions this rifle feeds from a proprietary magazine designed to feed the T65 round. This magazine does not appear to closely follow the pattern used by Winchester on several other designs during the period. The projection from the rear of the magazine slides along a channel cut in the metal magazine well block. It has font and rear locking shelves, with the front shelf acted on by the magazine release lever.

DSC_0229
A look at the rifle’s receiver and serial number markings from above (Matthew Moss)
S1230030_Moment
With the action open. Note the magazine insert at the rear of the magazine well (Matthew Moss)

Development of the .30 Light Rifle round, which would eventually become 7.62x51mm, began in 1944, with the round first being referred to as the T65 in 1946. It appears that the rifle is chambered in a version of the T65 cartridge, but which iteration exactly is unknown. However, its chambering does support the theory that the prototype may date from 1947-48. The T65 didn’t take on the now standard 7.62x51mm dimensions until 1949 in the form of the T65E3 round but without a chamber casting it is impossible to know the rifle’s exact chambering.

yn4QSZC
A photo representing the evolution of the .30 light rifle round (Courtesy of DrakeGmbH)

While Winchester continued to work on adapting the M1 Garand into a select-fire rifle none of their rifles were seriously considered by US Ordnance. At the same time John Garand was working on his own series of select-fire, magazine-fed prototypes (the T20 series) at Springfield while Remington had also been awarded a contract to develop a similar rifle, tested under the designation T22. These projects subsequently gave way to a number of other designs, all chambered in the T65 round, including the T25/47, T44 and T48. These were all tested before the Garand-influenced T44 was eventually selected in 1957, becoming the M14.

Addendum:

Harry Sefried II served in the US Army Air Corps during World War Two before joining Winchester as a firearms designer in 1944. In the 1950s he left Winchester to become Ruger’s chief engineer until he retired in 1979. He died in 2005, aged 84.


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Bibliography:

Patents:

‘Semiautomatic Firearm Convertible to Full Automatic’, H.H, Sefried, US Patent #2479419, 25/08/1944, (source)

‘Box Magazine Latch Mechanism for Repeating Firearms’, H.H, Sefried, US Patent #2386722, 29/09/1944, (source)

‘Support for Rifles and Other Shoulder Firearms’, H.H. Sefried, US Patent #2420267, 19/04/1945, (source)

‘Fire Control Mechanism for Automatic and Semiautomatic Firearms’, H.H, Sefried, US Patent #2464418, 02/01/1948, (source)

‘Strip Clip for Loading Box Magazines’, S.K. Janson, US Patent #2894350, 11/04/1956, (source)

Secondary Sources:

‘The Select-Fire M1 Garand’, F. Iannamico, Small Arms Review, (source)

Harry H. Sefried II Obituary, Hartford Courant, June 2005, (source)

‘Light Rifle, Part IV: The M1 Garand Learns To Rock And Roll’, TFB, Nathaniel F., (source)

Cartridge History for the Day – .30 Light Rifle, (source)

‘Winchester Proto-M14 Rifle’, Forgotten Weapons, (source)

Double Stack En Bloc Clips

Following on from our recent video on the John Browning prototype, which used en bloc clips, we have a video from our friend Jack Dutschke. Jack is an Australian cartridge collector, historian and author.

TAB Double-Stack En-Bloc clips_Moment
Some en bloc clips from Jack’s collection (Jack Dutschke)

In his first video with TAB Jack takes a look at en bloc clips, specifically double stack en blocs. Using examples from his impressive collection he discusses how en bloc clips work and takes us through their pros and cons.

TAB Double-Stack En-Bloc clips_Moment1
Garand & Pedersen en bloc clips (Jack Dutschke)

He examines the ubiquitous 8-round en bloc used by the M1 Garand as well as the much rarer 10-round clip for John Pedersen’s PA rifle which was chambered in his .276 round. Finally, Jack treats us to a look at a PTRS-41 anti-tank rifle en bloc clip which holds five massive rounds of 14.5x115mm.

TAB Double-Stack En-Bloc clips_Moment3
The big bastard – a Garand en bloc next to a PTRS-41 clip (Jack Dutschke)

Huge thanks to Jack for putting this video together for us, we’re really excited to have videos from him and we’re looking forward to more from him in the future! In the mean time you can find Jack’s project Cartridge Gram over on Instagram and on Facebook. He has a wealth of great photos and information on ammunition. 


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

John Browning’s 1892 En Bloc Lever-Action Prototype

The 1890s were one of John Browning’s most prolific periods, during which he developed a host of firearms which would never actually see production. Here, we’re lucky enough to be able to examine one of those prototypes that were never produced. Dating from 1892, this rifle departs from Browning’s earlier lever-action rifle designs in a number of interesting ways. Perhaps the most interesting aspect of the design is its use of en bloc clips, instead of the tube magazine traditionally used by Winchester’s repeating rifles. John Browning, and his brother Matthew, filed the patent covering the design in June 1892.

DSC_0612a
Right side of the rifle, note its ‘musket’ configuration (Matthew Moss)

The rifle is in what is typically referred to at the time as a ‘Musket’ configuration, signifying that it is a military long-arm. It has a long 32.5 inch barrel, which is held in place by two barrel bands. Overall the rifle is around 50 inches in length and weighs just over 9lbs. The rifle is chambered in a .30 calibre cartridge, likely the then new .30-40 Krag round given its proposed market. It has a ladder-style rear sight with range graduations from 100 to 1,000 yards.

US486272-drawings-page-2
Browning’s patent drawing showing the rifle’s action (US Patent Office)

Okay, let’s take a closer look at the prototype. During the 1890s Browning experimented with a series of magazine systems including an en-bloc clip system. This rifle uses a 5-round magazine which is fed from an en-bloc clip. The idea of an en-bloc clip was relatively new with Ferdinand Mannlicher patenting the idea in the 1880s and using it in his Model 1886 and 1888 rifles. It is unclear if Browning was familiar with Mannlicher’s system but the two are very similar. If you’re unfamiliar with en bloc clips it means that the cartridges are loaded into the weapon in the clip rather than stripped from the clip.

DSC_0627
A look at the ejection port for the en-bloc clip (Matthew Moss)

Browning’s prototype holds five rounds in its clip, which from patent drawings we can see was not reversible. Sadly, we don’t have an example of Browning’s clip to examine but his 1892 patent (see above) gives us a good idea of what it would have looked like. It clearly has a cut at the top of the clip which appears to have been used to help guide the round up into the chamber.

Rounds were pushed up into the action by a follower arm which was actuated by a v-spring located at the front of the magazine housing. The bottom of the fixed magazine housing has a cut-out corresponding to the clip to allow it to fall or be pushed clear by a new clip once it was empty.

DSC_0615
The rifle’s lever fully-forward with its action open and striker cocked (Matthew Moss)

The rifle also departs from the traditional hammer system and uses a striker-fired action. From the patent drawings we can see how the rifle’s striker worked, with a coil spring extending into the stock and a sear holding the striker to the rear. The striker is made up of two pieces with the striker hitting a long firing pin inside the bolt.
The striker has, what the patent refers to as, a ‘thumb piece’ to enable re-cocking and to indicate if its cocked or not. The striker was cocked by the cycling of the lever and held in place by the trigger sear.

DSC_0625
A view inside the action with the bolt partially retracted before it moves down and back into the rifle’s wrist (Matthew Moss)

The lever was held in the close position, preventing out of battery discharges, by what Browning’s patent calls a downward-projecting dog, which projected through a small hole in the trigger assembly link and locked into a catch in the front of the lever loop.
The use of a striker, rather than an exposed hammer, allows the rifle bolt’s travel to be enclosed rather than have the bolt project out of the rear of the receiver, as in previous Winchester lever-actions, we can see that this rifle’s bolt slides back at an angle partially down into the wrist of the stock. This is arguably more ergonomic and potentially helps to prevent ingress of dirt.

The first half of the lever’s travel pulls the bolt to the rear, while the second part cocks the striker. An arm extending from the lever pushed the bolt rearward until the trigger sear was engaged. In order to give the lever enough throw to open the action far enough to allow a round to be loaded the trigger mechanism has to be pivoted out of the action, much like the earlier Winchester 1886.
The bolt has a pair of trunnions which project from the sides of the bolt, these run inside longitudinal grooves either side of the receiver, while the rear of the bolt is free to angle up and down as it cycles. The action is locked by the rear of the bolt secured against the rear of the receiver, rather than with a rising locking bolt.

DSC_0614a
Left side of the rifle (Matthew Moss)

During the period Browning was also working on other lever action and, even more unusual, so-called pull-apart actions as well as various magazine types including a revolving magazine, stripper-clip box magazines and of course as we’ve already seen a detachable box magazine-fed rifle. The 1890s were a truly prolific period for Browning.

The design was purchased by Winchester and the Brownings’ patent was granted in November 1892. The gun, like many of Browning’s other designs of the period, never saw production. Making this rifle a rare one-of-a-kind prototype. It’s an elegant design and the action is smooth. When Winchester did finally seek to produce a military lever-action they chose another of Browning’s designs which retained his traditional rear-locking bolt, which became the Model 1895.

This rifle is a unique prototype and it was an honour to examine it. It’s now on display at the newly refurbished Cody Firearms Museum at the Buffalo Bill Centre of the West. Our thanks to the museum for allowing us to film items, like this one, from the museum’s collection.


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Bibliography:

‘Breech-loading Firearm’, J. & M. Browning, US Patent #486272, 15/11/1892 (source)

John M Browning: American Gunmaker, J. Browning & C. Gentry (1964)

Early Johnson Rifle with Handguard & Bayonet Lug

The Johnson is already one of the 20th century’s most interesting military rifles, in terms of both design and history, and this rifle, serial number R-14, is perhaps even more interesting. Johnson’s military rifles were initially designated the Type R – for rotary magazine, it was the ‘R’ serialised rifles which were used during US military testing in 1938-40. We are most familiar with the classic handguard-less appearance of what became known as the Johnson M1941. Few examples of a Johnson with a handguard survive.

DSC_0648JohndonR14a.jpg
Right-side view of the R-14 with original optional extra handguard (Matthew Moss)

The rifle was developed by Melvin Johnson, a USMC Reserve Captain, in the mid-1930s, Johnson began work on the rifle just as the M1 Garand was adopted. Johnson was granted his first patent protecting his rifle in September 1937. His rifle was tested in 1938-39 by US Army Ordnance but advanced no further than testing. Johnson lobbied politicians leading to a bill being introduced in an effort to have Johnson’s rifle adopted. On May 29th, 1940 the US Senate’s Military Affairs Committee met with Johnson and military representatives to discuss the rifle and the Bill which had been proposed, S.3983, to ‘Provide for the Adoption of the Johnson Semiautomatic Rifle as a Standard Arm of the Military’. The bill, however, led nowhere and the M1 Garand’s introduction continued.

3693
A Johnson M1941 (Courtesy of Rock Island Auction Company)

The handguard fitted to R-14 was actually an optional extra offered by Johnson Automatics. It appears to have been an attempt to address one of the main concerns raised by the US military –  the Johnson’s unsuitability for bayonet fighting. As the rifle uses a short-recoil operated action the barrel recoils about ½ inch on firing, this means that the weapon’s barrel isn’t actually fixed in place meaning when the bayonet was used the barrel moves backwards ½ inch when it contacted something or someone with enough force.

Johnson rifle from manual.png
A Johnson R-Type Rifle fitted with hanguard & M1905 bayonet (Johnson Automatics Brochure)

From the Senate Committee hearing we know that there were real concerns about the rifle’s bayonet fighting characteristics. With US Army Ordnance noting that “this rifle is very poorly suited to bayonet fighting.” Noting that the exposed barrel was too narrow to grasp properly and was also un-insulated if the barrel was hot from firing. The non-fixed, recoiling barrel was also highlighted as another ‘deficiency’. Major Grant Schlieker, the Infantry Liaison Officer at the Aberdeen Proving Ground, shared similar concerns. In addition to concerns about the lack of handguard to grasp when bayonet fighting he noted in his statement that during their testing the Johnson has struggled to cycle properly when fired at a depressed angle with a bayonet fixed and that striking something with the bayonet hard enough lead the rifle to extract and eject a chambered round.

DSC_0647 - CopyJohndonR14a
A closer look at the handguard, also note the addition of a stacking swivel just behind the bayonet lug (Matthew Moss)

Johnson refuted these concerns by stating that the barrel was exposed with good reason so that it could cool rapidly, suggesting that enclosed barrels like the Garand’s became too hot to grasp after sustained firing thus also making bayonet fighting difficult. Johnson also noted that a ‘Johnson Sword Bayonet’, which extended forward under the barrel from the Johnson’s normal forend had been developed to address the problem but the ergonomics and usefulness of this terrifyingly long bayonet are unclear.

JohnsonSwordBayonet.jpg
An R-type rifle fitted with the extremely long Johnson Sword Bayonet, note the large lug beneat the barrel, extending from the rifle’s handguard (Johnson’s Guns – Canfield)

You would imagine that a fixed, full-length stock with the barrel recoiling inside would have been a more elegant solution allowing the bayonet to be fixed to a nosecap rather than the barrel. But it would seem that Johnson was passionate about having the exposed barrel to allow cooling.

It is worth noting that the bayonet issued with the M1941 was the lightweight spike-type, developed in order to elevate potential issues with cycling while the bayonet was fixed.

DSC_0658JohndonR14a.jpg
A close up of R-14’s markings (Matthew Moss)

A proponent of the rifle, USMC Captain, George Van Orden (who commanded the Rifle Range at the Marine Corps Barracks at Quantico) went so far as to claim that the recoiling barrel had a positive impact on bayonet fighting “a recoiling barrel can provide extra thrust in bayonet fighting, as in the case of a boxer who in striking a blow, at the moment of contact… straightens his elbow smartly.” The Johnson Automatics manual for the rifle even claimed that testing against pine board showed that “the short recoil of the barrel actually tends to increase the penetration of the bayonet.”

From the May 1940 Senate hearing records we know that the R-14 wasn’t always fitted with the barrel with the enclosed handguard. It was one of several rifles used by Captain Van Orden to test the rifle’s accuracy and there is not mention in his account of the rifle’s barrel being shrouded with a handguard. This isn’t too surprising as the Johnson’s barrel can be removed easily and readily swapped out.

DSC_0652JohndonR14a.jpg
Close up of the guide collar at the rear end of the handguard (Matthew Moss)

The bayonet lug appears to be designed to mount a US Army M1905 bayonet, the sword bayonet issued with the M1903 Springfield. The assembly also has a sling swivel. R-14’s barrel is 23.75 inches long – this is a little longer than the standard 22 inch barrel, but 24 inch barrels were an option offered by Johnson Automatics. The round wooden grips panels are held in place by three pairs of slips and the nosecap and the guide collar.

Other than the forend this rifle also has a slightly different style of rear sight compared to the M1941 production rifles. The receiver markings are also simpler with calibre, patents and a plain maker’s mark, with serial number at the bottom.

DSC_0663JohndonR14a.jpg
A closer look at the handguard’s nosecap and bayonet lug (Matthew Moss)

The addition of the handguard certainly does allow a greater area for the forward hand to grip the rifle. But what is less clear is the effect the added mass of the handguard, nosecap and bayonet (when mounted) had on the cycling of the gun. Logic would suggest that any weight added to the barrel would slow the its travel and potentially cause reliability issues. The handguard and bayonet would have added at least 2lbs. Sadly, I’ve been unable to find any documentary evidence to tell us how the rifle functioned with the forend. No mention of the handguard is made during the Senate committee hearing but a ‘fixed-type’ bayonet is mentioned which is described as “not in any way interfering with the recoil of the barrel.” This was presumably referring to the long Johnson Sword Bayonet. Despite them being offered as an official option it is fair to presume that the rifle would have struggled to operate properly when fitted with the handguard.

When the Johnson finally entered production it was with an exposed barrel as he intended and R-14 remains one of the few examples to have the Johnson’s optional handguard.

Many thanks to the Cody Firearms Museum for allowing us to examine and film the rifle and take a look at a rare example of the Johnson Automatics optional extra handguard.

If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Bibliography:

Military Handbook of the Johnson Semi-Automatic Rifle (1939)

The Johnson Semiautomatic Rifle: Hearing Before the Committee on Military Affairs, United States Senate, Seventy-sixth Congress, Third Session, on S. 3983, a Bill to Provide for the Adoption of the Johnson Semiautomatic Rifle as a Standard Arm of the Military and Naval Forces, May 29, 1940 (source)

Johnson Rifles and Machine Guns: The Story of Melvin M. Johnson, Jr. and His Guns, B. Canfield (2002)

The Model of 1941 Johnson Rifle in Marine Service, B. Canfield, American Rifleman, (source)

Johnson R-14, Cody Firearms Museum, (source)