Bomarc Missile – The First Long Range Surface-to-Air Missile

The Boeing Bomarc was the world’s first long-range surface to air missile and despite its shortcomings remain in service for a decade. It was an extremely ambitious project and is a Cold War weapon that few today are familiar with.

In the late 1940s, Boeing began work on a surface to air missile – then described as a ‘pilotless interceptor’. The project was code-named MX-1599 and the Michigan Aerospace Research Center (MARC) joined Boeing to work on the programme.

DSC_0076wm
Boeing BOMARC at Hill Aerospace Museum (Matthew Moss)

The MX-1599 was to be a long-range supersonic nuclear-tipped surface to air missile (or SAM), detonated by a proximity fuse. The missile went through a number of official designations as it was developed during the 1950s – finally becoming known as the Bomarc – an acronym of Boeing and Michigan Aerospace Research Center.

The Bomarc was launched vertically using rocket boosters, before its main ramjet engines took over, enabling it to cruise at Mach 2.5 (approx. 1,920 mph). The initial Bomarc A had a range of 200 miles with an operational ceiling of 60,000 feet.

It was ground controlled using NORAD’s Semi-Automatic Ground Environment (SAGE) system until it neared its target, when an onboard radar, a Westinghouse AN/DPN-34 radar, took over.

The Bomarc could be tipped with either a 1,000 lb conventional high explosive or low yield W40 nuclear warhead. These were detonated by a radar proximity fuse. The W40 had a yield of up to 10 kilotons, able to destroy entire formations of aircraft.

CIM-10_Bomarc_missile_battery
BOMARC Site No. 1 at McGuire Air Force Base (USAF)

The missile had a wingspan of just over 18 feet or 5.5metres, it was 45 feet or 13.7 metres in length and weighed approximately 16,000 lbs (7257 kg) on launch. The Bomarc’s first flight took place on 24th February, 1955.

The USAF intended to use the missile to engage incoming Soviet bomber formations and ICBMs. Originally planning for over 50 Bomarc launch sites, but only one was operational by 1959 and only eight were operational by the early 1960s. The upgraded Bomarc B was developed in the early 1960s, with an improved radar, a Westinghouse AN/DPN-53, and a greater maximum range of 430 miles, as well as a higher operational ceiling of 100,000 feet.

The Bomarc was stored horizontally in specially built semi-hardened bunkers and kept fuelled and ready to launch at a moment’s notice. When targets were detected the missile would be raised and launched vertically.

One of the dangers of keeping the missiles fuelled became clear in June 1960, when a nuclear-armed Bomarc A caught fire exploding the onboard tank and contaminated part of McGuire Air Force Base with melted plutonium. Despite this the missiles remained operational for over a decade with the first sites being deactivated in 1969 with the last stood down in 1972.

BOMARC (1)
BOMARC launching (USAF)

While the Bomarc missiles were the world’s first operational long-range anti-aircraft missile they were too slow to achieve operational readiness to keep pace with the rapidly changing nuclear threat – as both superpowers transitioned from bomber to ICBM-focused strategies. They were expensive to manufacture and difficult to maintain at readiness. In the late 1950s the Bomarc also embroiled in a war of words with the US Army arguing their short range Nike Hercules (SAM-A-25/MIM-14) missile was more effective. The Hercules remained in service through to the 1980s, albeit as a air defence missile – rather than targeting soviet ICBMs or bomber aircraft.

The Bomarc was an ambitious project when it began in the late 40s, but with technology and cold war nuclear strategy rapidly evolving the Bomarc was almost obsolete before it became operational. A total of 570 Bomarc missiles were built between 1957 and 1964 with the US and Canada (which led to considerable political controversy) being the only countries to deploy them.

I hope you guys enjoyed this look at the Bomarc, we’ll have a few more videos on missiles in the future.

If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Specifications:

Wingspan: 18 feet 2 inches
Diameter: 35 inches
Length: 45 feet
Approx. takeoff weight: 16,000 pounds
Top speed: Mach 2.5
Range: 400 miles (IM-99B)
Ceiling: 100,000 feet
Power: 50,000-pound-thrust solid-fuel rocket (takeoff); two 12,000-pound-thrust Marquardt ramjet engines (cruise)
Armament: 1,000 lb conventional or 10 kiloton W40 nuclear warhead

Bibliography

IM-99A/B BOMARC Missile, Boeing, (source)
Nuclear Weapons of the United States: An Illustrated History, J.N. Gibson, (1996)
Nike Historical Society (source)
Supersonic Guardian, Boeing film, c.1960 (source)

The Bomarc featured in the video is part of the Hill Aerospace Museum’s collection.

Surplus Zone: SUSAT Scopes

Vic continues his Surplus Zone series with a look at the British SUSAT sight, principle by Britain on the SA80 and by Spain with the CETME Model LV and AMELI. In this episode Vic shows us how to refit a SUSAT with new elements.

The Sight Unit Small Arms, Trilux was developed in the late 1970s by the Royal Armaments Research Development Establishment. It is a 4x optic which uses a radioactive tritium light source, for use in low light conditions, which due to radioactive decay has to be replaced every 8-10 years.

The SUSAT is still in use with the British Army.

Browning Prototypes – Detachable Box Magazine Lever Action Rifle

The rifle we’re examining is one of dozens of designs sold by the Brownings to the Winchesters Repeating Arms Company during their long relationship. This design dates from the early 1890s and represents one of Browning’s numerous attempts to move away from the tube magazine-fed designs favoured by Winchester.

The prototype is based around the lever-actuated vertically sliding locking block patented by Browning in May 1884 and first used by Winchester in the Model 1886. The rifle itself is in the ‘military musket’ configuration with full-length handguards, military sights, a cleaning rod and able to mount a bayonet.

DSC_0590
Right side of the rifle (Matthew Moss)

The rifle is chambered in a .45 calibre cartridge, likely .45-70, and weighs just over 9lbs. Browning patented the design of the rifle and magazine in August 1891, with the patent being granted in December (US #465339). It is attributed to John Moses Browning and his younger brother Matthew S. Browning.

The most interesting feature of the rifle is its detachable box magazine. The magazine is held in place by a spring-loaded catch at the front of the magazine which locks against a tab in the magazine’s wall.

DSC_0577
A close up of the magazine well, note the added metal lip of the front of the well, not a part of the receiver (Matthew Moss)

It differs from the box magazines previously developed by James Paris Lee, which Lee begun developing in the mid-1870s (see examples listed below). It’s a simple design with a follower powered by a coil spring. The prototype mag itself is made from pressed metal and is held together with some rough welds. Unlike the magazines we’re familiar with today, the top of the Browning’s magazine is almost entirely enclosed with only a small opening at the rear. The rounds would be loaded nose-first with their rims sliding into the channel at the rear of the magazine.

DSC_0580
Close up of the magazine removed from the rifle – right side (Matthew Moss)
DSC_0586
A view of the top of the magazine with the small opening and notch for the cartridge rime visible (Matthew Moss)

The single-stack magazine appears to hold around five rounds, with Browning’s patent supporting this. The position of the magazine, in front of the action – not below it, is a hint at how it worked. An almost fully enclosed magazine does have its advantages – it would have prevented dirt from entering the mag and it also overcame the need for feed lips which were susceptible to damage, one of the elements which took Lee some time to perfect.

DSC_0582
A close up of the front wall of the magazine, note the locking notch (Matthew Moss)

So How Did The Magazine Work?

There is a shoulder on the underside of the bolt which caught the rim of the cartridge which was protruding from the magazine. The bolt pulled the cartridge backwards, out of the magazine and onto a cartridge lifter. As the lever reached its full forward travel the lifter then elevated the round up into line with the breech. When the lever was cycled back again the round was pushed off the lifter and chambered, just as in a normal tube-fed Winchester. As the lever reached the end of its return travel the locking block rose to locked the action.

US465339-drawings-page-2
The Browning’s 1891 patent for the magazine, note ‘h‘ is the shoulder which pulled rounds out of the magazine (US Patent Office)

The prototype has a sliding safety bar that locks the lever and blocks the trigger. The trigger differs from the Model 1886 as it is integrated with the lever. In the photograph below we can see the locking block descended, with the lever forward, and the breech block to the rear with the action open. We can also see the striker assembly at the rear of the bolt. The striker cocks on closing when the lever is returned rearward.

DSC_0595
The rifle with its action open, bolt o the rear and lever forward. Note the striker assembly at the rear of the bolt (Matthew Moss)

It’s quite an exposed action, with the entire top of the action open. With the action closed in the photograph below we can see the extractor running along the right side of the bolt.

DSC_0572
A close up of the rifle’s receiver which is still ‘in the white’ (Matthew Moss)

It’s clear from the design of the magazine that Browning didn’t intend the rifle to be reloaded with stripper clips, although single loading of the rifle itself (not the magazine) would have been possible. When compared to other contemporary system this would have been somewhat of a disadvantage compared to Lee’s magazine’s later loading with chargers and stripper clips. However, from examination of Browning’s 1891 patent his intention becomes clear, the patent explains that he intended for the magazine itself to be replaced:

“One magazine may be readily removed from the gun and another introduced in its place, so that the person, using the arm may have at hand several magazines to be interchanged as the cartridges from one magazine are exhausted.”

This is a concept that wouldn’t be accepted by militaries for decades. Winchester purchased the rights to the design but this was one of many designs Browning sold the company which never saw production. The design and prototype are fascinating and represent one of Browning’s lesser-known concepts.

DSC_0591
Left side profile of the rifle (Matthew Moss)

This rifle is a unique prototype and it was a true honour to examine it. It’s now on display at the newly refurbished Cody Firearms Museum, at the Buffalo Bill Centre of the West. The new museum is phenomenal and well worth a visit. Our thanks to the museum for allowing us to film items, like this one, from the museum’s collection.

If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Bibliography:

‘Magazine Gun’ J.M. & M.S. Browning, US Patent #465339, 15 Dec. 1891 (source)

John M Browning: American Gunmaker, J. Browning & C. Gentry (1964)

Some of James Paris Lee’s magazine patents, for comparison:

‘Improvement in Magazine Fire-arms’, J.P. Lee, US Patent #221328, 4 Nov. 1879 (source)

‘Magazine For Fire Arms’, J.P. Lee & L.P. Diss, US Patent #295563, 25 Mar. 1884 (source)

‘Magazine Fire Arm’, J.P. Lee, US Patent #383363, 22 May, 1888 (source)

‘Gun Magazine’, J.P. Lee, US Patent #627824, 27 Jun. 1899 (source)

Vickers Gun Disassembly

The Vickers Gun is an iconic weapon, developed from the Maxim and adopted by the British in 1912. It served for over 50 years in conflicts all around the world. In this video, we’re lucky enough to have Richard Fisher of the Vickers Machine Gun Collection and Research Association shows us how to disassemble a the gun and talk us through its internals.

Big thank you to Rich for taking the time to help with this video and provide the voice over explaining the process! We’ll have more videos on the Vickers Gun in the future! Check out Richard’s work over on the Vickers Machine Gun Collection and Research Association’s site here.

I’ll let Rich explain the disassembly process in real time in the video but here are a couple of photographs of the gun disassembled:

DSC_0371
The Vickers gun field stripped (Matthew Moss)

This is the gun in its fully field stripped condition, with lock still assembled, but with its fusee spring and cover off and its barrel and action removed. Just below the barrel is the feed block.

Here’s the Vickers Gun’s lock disassembled into its 14 component parts:

DSC_0363
The gun’s disassembled lock (Matthew Moss)

This photo gives us a good look inside the receiver with the barrel, action and side plates removed, The spade grip assembly simply folds down to allow the action and barrel to be slide out of the gun.

DSC_0366
Once the action and barrel is removed you can look straight through the receiver and down through the water jacket (Matthew Moss)

Finally, here’s the gun reassembled and ready for action.

DSC_0353
The gun fully reassembled (Matthew Moss)

Thanks again to Richard for his help with this video, it was great to collaborate and hopefully we’ll have more videos with Rich in the future.  Please check out the Vickers Machine Gun Collection & Research Association’s site to find out more about what they do. They have some wonderful resources, including a comprehensive collection of manuals, for not just the Vickers but also the wider British Army from the past 100 years. You can also order copies of the brilliant instructional posters which were featured in the video over on the the associations website too!

If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

 

Rifle No.4 Cutaway

We’ve looked at a few cutaways in the past, today we’re going to take a look at a Lee-Enfield Rifle No.4 cutaway.

One of the main drawbacks of the venerable SMLE was that it was expensive and time consuming to manufacture. The No.4 was an attempt to address this. It evolved from the experimental No.1 MkV and MkVI which were trialled in the early 1920s. The key mechanical change was that the barrel was free-floated and had a heavier profile to deal with expansion of the stock. The No.4 also had a new rear aperture sight mounted further back on the receiver giving a better sight picture and a longer sight radius.

DSC_0317
Close up of the Rifle No.4 Instructional Cutaway’s receiver (Matthew Moss)(Matthew Moss)

With this cutaway we get a look inside the butt trap, which has a pull-through and oil bottle inside, then as we move to the action we get a look at the rifle’s trigger, sear, sear spring and magazine catch.  If we look closely we can see the bolt head catch. The magazine has also been cutaway, with the magazine follower spring just visible.

This cutaway rifle has had all of the wood around its receiver removed, so we can see the magazine housing floor plate and the point where the retaining screw attaches to the trunnion. As we move along we get a look inside the chamber where the outline of the cartridge neck is easy to see and we can also see the barrel’s rifling too.

DSC_0316
Rifle No.4 Instructional Cutaway (Matthew Moss)

Down near the muzzle the rifle’s upper retaining band and the hand guard have been cutaway to show the barrel inside. The No.4 was adopted for service officially in November 1939 and just over 4 million were made during WW2. We’ll have a full, more in-depth video on the No.4 in the future.

Check out our earlier videos featuring cutaways including the Pattern 14 and the CETME AMELI.


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

Update!

This week TAB hit 4,000 subscribers! Thanks for all your support over the last couple of years. I filmed this update on Tuesday during a recent research trip in the south of England. I visited Fort Nelson near Portsmouth and thought I’d film a quick update while I stopped for a break.

If you enjoy our work please consider supporting us via Patreon, TAB is an entirely viewer supported, non-monetised channel and any help is very much appreciated!
We have some great new perks, check out our Patreon page here.

Fort Clinch, Florida

Today, we have a short video looking at Fort Clinch, a fort built at the mouth of the St Mary’s river in North eastern Florida. The pentagonal masonry fort defends the strategic position on Amelia Island, at the mouth of the river and Cumberland sound.

WhatsApp Image 2019-06-15 at 3.02.12 PM
Fort Clinch (Steve Moss)

While the site had been fortified by the Spanish in the 1730s, construction of the present fort began in 1847 after the end of the Second Seminole War. Built as part of the Third System of coastal defences, which began in the 1820s and was characterised by building thick masonry walls. Clinch is one of the smaller forts that were built to defend less important harbours. Named after General Duncan Lamont Clinch, the fort wasn’t fully completed until 1869.

During the civil war it was originally held by the Confederacy before they abandoned it and it was taken over by the Union in spring 1862. The Union then set about finishing the fort. While some sources suggest it was designed to mount as many as 70 guns, it was never fully equipped but we can see that it has mounts and barbettes for around 40 guns on its ramparts.

fort-clinch
An illustration of the incomplete Fort Clinch featured in a March 1862 copy of Harper’s Weekly

Today, the fort has a handful of Rodman guns in place. The guns appear to be mounted on front-pintle barbette carriages. Beneath the guns are ammunition casements; powder rooms and shot stores, the holes for bringing up ammunition can still be seen.

Rodman guns were a staple of US coastal forts during the late 19th century, designed by Thomas Jackson Rodman, they were hollow cast and much stronger than earlier, traditionally cast guns. They were produced in a variety of calibres ranging from small 8 and 10in guns to huge 15 and even 20in guns. They were designed to be fired from behind a parapet, giving the crew some protection, the parapet at Fort Clinch is missing. The guns themselves were smoothbore and were designed to fire round shot and explosive shell. They would have been manned by an 8-man crew and, depending on calibre, had a range of over 4,000 yards.

WhatsApp Image 2019-06-15 at 2.30.55 PM
An 8 or 10 inch Rodman Gun (Steve Moss)

In 1864, Major-General John Foster, a veteran of the Siege of Fort Sumter, reported that the fort was poorly sited and its design was flawed. It’s clear to see that the fort’s brick walls certainly wouldn’t have withstood fire from rifled artillery for long.

The fort never saw action and once finished wasn’t garrisoned again until 1898 during the Spanish-American War, when a 8″ Rifled Cannon Emplacement with a concrete gun shield was built. The fort was subsequently abandoned again and began to deteriorate until the 1930s when it became part of a state park and was renovated by the Civilian Conservation Corps.


Bibliography:

September 3, 1864: Foster relates the “main defects” of Fort Clinch, Florida, To the Sound of the Guns, (source)

Map of the Entrance to Cumberland Sound Ga. & Fl., Tampa Bay History Centre, (source)

Fort Clinch, Florida State Parks, (source)

A Visit to Fort Clinch, KF4LMT, (source)

A series of photographs taken in the 1930s, Amelia Island Museum, (source)