STEN Magazine Loaders

While the ongoing Coronavirus pandemic has prevented some archival research I had planned which would have informed much of the STEN series, our good friend Richard at the Vickers Machine Gun Collection and Research Association, has come to our aid and we’re able to cover some of the loading accessories developed for the Sten’s magazines.

As we know the Sten uses a 32-round double stack, single feed magazine which can trace its origins back through the Lanchester Machine Carbine to the Haenel MP28,II’s magazine designed by Hugo Schmeisser [patented in 1931].

Sten Magazine, inert 9x19mm rounds and MkII and MkIV magazine fillers

The nature of the single feed makes the magazine difficult to load by hand with the last few rounds very hard to insert. So a series of four marks of ‘magazine fillers’ were developed. These are described in the British Army’s official List of Changes in February 1943.

The MkI is described as consisting of “a lever mounted on a short case which conforms to the shape of the magazine. It is hand operated, the loading lever being given a rocking motion during filling. The MKI slipped over the top of a magazine with a rivetted spring tab which indexed into a notch in the front of the Sten mag.

A cutaway showing the MkII filler

The MkII is very similar but simplified by having the spring catch mounted on the rear instead of the side and engaged a “small rectangular slot on the magazine”. The rear of the spring is turned up slightly to allow the user to remove its from the magazine.

The MkIII, which is possibly the rarest of the fillers, is described as:

“hand operated but of different design from the MkI and MkII. It consists essentially of a spring loaded vertical plunger which is attached externally to a case, the latter to assemble on the magazine. There is no retaining catch. It comprises the following parts:

Case. Is a rectangular shaped steel pressing with a tube of rectangular section welded thereto. The latter, which houses the plunger and spring, has a hole trilled at the lower end to accommodate a pin which restricts the amount of movement of the plunger and acts as a stop for the compressing spring.

Plunger, loading. Is made of two laminated steel strips welded together the top part of which is set to form a handle. The body of the plunger is slotted to accommodate the compression spring. The top part is splayed to form a suitable contact with the cartridge.”

List of Changes, Feb. 1943
Sten accessories including a sling and a MkII magazine filler

The other more common filler is the MkIV. Which is a much simpler design with a loading lever mounted on top of a clip which is attached to the rear of the magazine body and retained by a spring similar to that of the MkII.

Rich has very kindly demonstrated the use of the two most common fillers – the MkII and the simpler MkIV. It takes Rich just under 2 minutes to load that magazine, but he was doing his best to show various angles and unlike a British soldier during the war he hasn’t regularly loaded magazines with one of these fillers either. Despite that the clip gives a good idea of how fast you could load a mag once you’re in the groove.

With the MkIV filler Rich was able to load the mag in about 1 minute 15 seconds, the stability of resting the base of the mag on the table helped with the MkIV’s simpler design.

Manual diagram showing both the MkII and MkVI

Also, as a follow on to our previous episode looking at the Sterling Submachine Gun’s magazine Rich has also demonstrated the loading of a Sterling mag to its 34 round capacity. No magazine filler needed with George Patchett’s double-stack, double feed magazine.

Massive thanks to Richard for taking the time to film the clips used in the video. please do go and check out Richard’s channel and www.vickersmg.org.uk.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

Fighting On Film: Theirs Is The Glory (1946)

Fighting On Film is a brand new podcast about classic and obscure war movies. Hosted by Matt and Robbie McGuire (of RM Military History). In this first episode we discus an absolutely fascinating war film – Theirs Is The Glory, a 1946 telling of the story of the Battle of Arnhem. What makes the film unique is that it was filmed entirely on location and with a cast made up of soldiers who had fought at the battle!

You can listen below or find the podcast here.

https://www.podbean.com/media/player/5jfxk-f0300d?from=usersite&vjs=1&skin=1&fonts=Helvetica&auto=0&download=1

Robbie and I discuss the unique production of the film, the weapons, kit and equipment seen on screen and some of our favourite scenes. We hope you enjoy our ramblings and we definitely encourage you to check Theirs Is The Glory out.

Some scenes from the film:

Find out more and follow us on twitter at @FightingOnFilm

XF-87 Blackhawk

Development of the XF-87 began at Curtiss-Wright in 1946, it would eventually be intended to be an all-weather interceptor. The Blackhawk was developed from an earlier ground attack, tactical bomber design, the XA-43. The Blackhawk was a response to the initial specification for a jet-powered night fighter, capable of speeds up to 530 mph, issued by the US Army Air Force in August 1945.

A number of companies responded including Bell Aircraft, Consolidated-Vultee, Douglas Aircraft, Northrop, Goodyear and Curtiss-Wright. The US Army Air Force down-selected Northrop’s design – then known as the N-24 and the Curtiss-Wright design- known as the Model 29A.

Curtiss-Wright XF-87 (US Air Force)

The XP-87 had a two-man crew seated side-by-side and was powered by two pairs of Westinghouse XJ34-WE-7 turbojet engines mounted on the wings. In comparison to the sleeker Northrop design, the Blackhawk was a slightly larger, bulkier and heavier aircraft with a straight wing profile. The XJ34-WE-7 turbojets only provided 12,000 lbf and Curtiss-Wright’s test pilot B. Lee Miller described performance in initial tests as sluggish. The Blackhawk’s armament was to consist of four 20mm cannons mounted in a nose turret.

The US Army Air Force designated the Curtiss-Wright jet the XP-87, while Northrop’s N-24 became the XP-89 and full-scale models of both were ordered.

The Curtis XP-87 (Curtiss-Wright, courtesy of Mark Lane)

In June 1948 the newly formed US Air Force re-designated fighters from P to F and the XP-87 became the XF-87 when prototypes were ordered. The XF-87 made its first flight in March 1948. During subsequent flight evaluations in October 1948, the Northrop XF-89 was found to be faster than the XF-87 and the US Navy’s XF3D (Douglas F3D Skyknight). While the Blackhawk was a capable and generally satisfactory aircraft it was deemed to be underpowered. It also reportedly suffered from buffeting at relatively slow speeds.

Walter Tydon’s patent for the Blackhawk’s landing gear (US Patent Office)

Evaluators disliked the Northrop and reportedly favoured the XF-87, however, one evaluating pilot likened its handling to a medium Bomber. An improved faster and more powerful Blackhawk was planned with J47 engines from General Electric. The fate of a second prototype is unclear and sources conflict. Most sources state that the XF-87 never had its armament fitted, however, photographic evidence clearly shows an aircraft, not with a turret, but with four nose mounted guns. This aircraft may be one of the airworthy prototypes or it could be a full-scale mock up built to show the USAAF during the selection process.

Despite the trials favouring the XF-89, the USAF initially ordered 57 F-87A fighters and 30 RF-87A reconnaissance aircraft from Curtiss-Wright in June 1948. Curtis-Wright and the USAF began a publicity campaign to unveil the new fighter, even appearing on the cover of an August edition of Aviation Week and in numerous other aviation publications, but the orders were abruptly cancelled in October 1948 and the USAF moved forward the development of the Northrop XF-89 instead. Check out our video on the F-89 Scorpion linked above.

The ‘F-87’ Blackhawk on the cover of Aviation Week (courtesy of Mark Lane)

The reason for this reversal of the decision is unclear. Only minor faults had been identified during testing and the more powerful J47 engines would have greatly increased the Blackhawk’s speed. The official reason for the cancellation was reportedly a disagreement on the price of a redesigned wing profile. According to his memoir, Walter Tydon, Curtiss-Wright’s chief engineer at the time, believed that some bad blood between Curtiss-Wright’s management and the then-President Harry S. Truman may have led the F-87 contract to be cancelled. Truman was Senator for Missouri from 1935 to 1945 and during that time Tydon believed he had come into conflict with the Curtiss-Wright’s management, perhaps regarding the company’s factory in St. Louis. Without substantial archival research it is difficult to verify either the official reason or Tydon’s theory.

Another potential reason for the cancellation was raised during the Congressional Hearings regarding the B-36 Program, Congressman Charles B. Deane noted that both Curtiss-Wright and Northrop had been informed that “unless they agreed to merge with Consolidated Vultee, business would be bad for them.” The testimony before the hearing notes that Curtiss-Wright were unenthusiastic about a potential merger and this might have been why the F-87 contract was cancelled. The Secretary of the Air Force denied this, however, stating that the cancellation was the result of “operating difficulties with the experimental model of the F-87, plus increasingly satisfactory operating data on competitive all-weather fighters.”

The XF-87 Blackhawk taking off (courtesy of Mark Lane)

Sadly, the prototype XF-87 Blackhawk’s was reportedly scrapped and photographs and footage of the initial flight testing of the Blackhawk is all we have left. The loss of the interceptor contract to Northrop led to the end of Curtiss-Wright’s aircraft production, with the Blackhawk being their last fighter design.

Special thanks to Mark Lane, the grandson of Walter Tydon, Curtiss-Wright’s chief engineer, for taking the time to discuss the Blackhawk and his grandfather’s role in its design.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Bibliography:

Saga of the P-40 and Curtiss Airplane Division: Its Rise and Demise, W. Tydon

Newest Fighter In the Skies, Aviation Week, 2 Aug. 1948

Ad featured in Army & Navy Journal, Vol. 85, No. 40, 7 Aug. 1948 (source)

Ad featured in Air Force, Vo.31, No.9, Sept. 1948 (source)

‘Investigation of the B-36 Bomber Program’, US Congressional Hearing, Aug.-Oct. 1949, (source)

Curtiss Aircraft, 1907-1947, P.M. Bowers (1987)

American Attack Aircraft Since 1926, E.R. Johnson (2008)

The Big Book of X-Bombers & X-Fighters: USAF Jet-Powered Experimental Aircraft and Their Propulsive Systems, S. Pace (2016)

Curtiss-Wright Aeroplane Factory, Missouri, National Register of Historic Places, US National Park Service (2016) (source)

The Battle of Palmdale – WW2 Drone Hellcat vs F-89 Scorpion Jet Interceptors

The Battle of Palmdale is one of those historic events that could easily spawn clickbait titles: US Navy vs US Air Force, Drone vs Manned Fighter, Runaway WW2 fighter vs Rocket-armed Jet Interceptor. None of these would be a lie! 

Artists impression of the ‘battle’ (Pageant magazine, 1957)

On 16th August, 1956 a US Navy Grumman F6F-5K Hellcat a target drone went rouge over California and the USAF scrambled a pair of Northrop F-89 Scorpions to shoot it down. The F-89s failed to down the Hellcat but did manage to start a serious wildfire. 

Check out the video below:


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

Northrop F-89 Scorpion

The Northrop F-89 Scorpion is perhaps one of the lesser known American jet interceptors of the 1950s. To put the F-89 into some context its development began in 1948, intended to be an all-weather interceptor, its stable mates included the F-86 Sabre and the F-84 Thunderjet. The F-89 made its first flight in August 1948 and entered service two years later.

In August 1945 the US Army Air Force released a specification for a new jet-powered night fighter with a speed of up to 530 mph. Jack Northrop began work on a swept wing design which went on to be evaluated with entries from  Bell Aircraft, Consolidated-Vultee, Douglas Aircraft, Goodyear and Curtiss-Wright. The US Army Air Force down-selected Northrop’s design – then known as the N-24 and the Curtiss-Wright XP-87 Blackhawk.

89 Scorpion Testing at Edwards Air Force Base
XF-89 Scorpion Testing at Edwards Air Force Base (USAF/US National Archives)

The Curtiss-Wright XP-87 was a slightly larger, slightly heavier aircraft with its two-man crew seated side-by-side. It was powered by two pairs of Westinghouse XJ34-WE-7 turbojet engines mounted on the wings. In comparison the Northrop design was slimmer, with sept wings and had its two Allison J35 turbojet engines buried low in its fuselage to reduce drag.

The N-24 was designated the XP-89 by the US Army Air Force and a full-scale model was ordered. Aerodynamic testing found that the swept wing was unstable in low speed and a straight, narrow profile was developed and the horizontal stabilizer and cockpit configuration was redesigned.

In 1948 the newly formed US Air Force re-designated fighters from P to F and the XP-89 became the XF-89 when prototypes were ordered. During subsequent flight evaluations the XF-89 was found to be faster than the XF-87 and the US Navy’s XF3D (Douglas F3D Skyknight). Evaluators disliked the Northrop and criticised its cockpit layout, however, the USAF moved forward with its development and scrapped the XF-87.

F-89B at Eglin Air Force Base. Note the external vibration dampeners on the horizontal stabiliser and the 6 cannons in the nose (USAF)

Testing with a second prototype continued and the engines were upgraded with a more powerful Allison J33-A-21 fitted with an afterburner, while concerns about ease of maintenance were answered by having the whole engine capable of lowering out of the fuselage. The XF-89 suffered a number of crashes during testing with a fatal crash on the 22nd February 1950, which killed flight test engineer Arthur Turton when flutter, or vibrations, in the elevator caused the tail of the aircraft to sheer off. The geometry of the rear fuselage and engine exhaust were found to be the cause and were redesigned.

342-USAF-22393_Trim_Moment(2)
F-89 firing its 2.75in ‘Mighty Mouse’ Mk 4/Mk 40 Folding-Fin Aerial Rockets (USAF/US National Archives)

Despite the fatal crash the aircraft’s flaws were addressed and production of the XF-89 was greenlit in January 1949, with a contract for 48 F-89s, worth just over $39 million, awarded in May 1949.

The F-89’s armament varied considerably during its service life. Originally it had been intended for the night fighter to have a turret with four forward-firing cannons and another 2 cannon turret firing aft. This was abandoned and the first F-89As had six forward-firing 20mm cannons and the ability to mount rocket pods carrying 16 5in rockets.

59fis-f-89-goosebay
Formation of three rocket-armed F-89Ds of the 59th Fighter Squadron (USAF/US National Archives)

The F-89A was quickly superseded by the B which had the same armaments but improved avionics. The F-89D entered service in October 1954, the D abandoned the cannons and instead had two rocket pods mounting a total of 104 smaller 2.75in ‘Mighty Mouse’ Mk 4/Mk 40 Folding-Fin Aerial Rockets.

Entering service in 1956 the F-89H was equipped with large wingtip pods that could externally carry three GAR-1/2 Falcon missiles each with 21 Mighty Mouse rockets internally. Delays refining the Hughes E-9 fire-control system meant that by the time the H entered service it was outclassed by newer, faster supersonic fighters like the F-100 Super Sabre, F-101 Voodoo and interceptors like the F-102 Delta Dagger and the F-104 Starfighter.

F-89J test firing an AIR-2 Genie tactical nuclear air-to-air rocket. The photograph was captured at the moment of firing during Test Shot John, Operation Plumbbob, 19 July, 1957 (National Nuclear Security Administration)

The F-89J, introduced in 1957, refitted the F-89D with underwing hardpoints for two MB-1 Genie nuclear armed rockets and four Falcon missiles. The J could also carry either the standard F-89D rocket/fuel pod or pure fuel tanks. 350 Js were converted from F-89Ds.

An F-89J has the distinction of being the only aircraft to fire a live MB-1 Genie during Operation Plumbbob (nuclear weapons tests) in July 1957. The MB-1 (later the AIR-2) was an air to air rocket with a 6 mile range and a 1.5 kiloton W25 nuclear warhead. It was ostensibly a tactical nuclear weapon designed to take on Soviet strategic bomber formations.

The USAF began to retire the F-89H in 1959 as more supersonic interceptors entered service and the refitted Js also began to be replaced the same year but remained in Air National Guard service for another decade.

342-USAF-22393_Trim_Moment
Flight of F-89s (USAF/US National Archives)

The F-89 is definitely a striking aircraft and a substantial number were built, 1,050 in total but they remain one of the lesser known early Cold War jet fighters. The F-89 featured in our video is an H and is on display at the Hill Aerospace Museum.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Bibliography:

Military Aircraft of the Cold War, J. Winchester (2012)

Flying American Combat Aircraft: The Cold War, R. Higham (2005)

Early US Jet Fighters: Proposals, Projects and Prototypes, Tony Buttler (2013)

Archival footage and imagery courtesy of the USAF, the US National Archives and the San Diego Air and Space Museum.

The M8 Greyhound Armoured Car

During the Second World War the US Army sought a light, nimble tank destroyer. The M8 developed by Ford ticked the Army’s boxes but by the time it entered production it’s 37mm gun couldn’t penetrate thicker enemy armour. Instead the M8 was pressed into service as a scout car.

An M8 during testing at Ford (US National Archives)

The M8 first saw action in Sicily in 1943 and subsequently saw service in every theatre of World War Two. One M8 reputedly knocked out a German Tiger II during the Battle of St. Vith, in December 1944.

The M8, while excellent on roads, did not perform well across country because of higher ground pressure from its wheels and its suspension system. Largely confined to roads when terrain or conditions were bad the M8’s thin armour also proved vulnerable to enemy mines. This was a problem first encountered in Italy and later in northwest Europe.

A 79th Infantry Division M8 Greyhound destroyed by mine near La Haye Du Puits, France (US Army)

Despite its shortcomings the M8 remained in service long after the war and many were sold as surplus with them continuing to be used throughout the Cold War all over the world. Some 8,500 were built.

Sources:

Tank Demonstration – Ford, US National Archives (1942)

M8 Greyhound Light Armored Car 1941–91, S.J. Zaloga (2012)


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

The Sterling Submachine Gun – Magazine

In May 1946, George Patchett patented a new curved magazine which would become one of the Sterling’s most recognisable features. It addressed some of the serious shortcomings of the STEN’s magazine.

George Patchett’s machine carbine, Which later that came to be known as the Sterling, had been initially designed to use the standard STEN magazine. This makes complete sense as not only was the STEN’s magazine readily available but it stood to reason that the British Army would prefer to retain the large number of magazines it already had in stores.

Capture 04_Moment
A Sterling L2A3 with a disassembled Sterling commercial-pattern magazine (Matthew Moss)

The STEN’s magazine is, however, the gun’s weakest link. Its a double-stack, single feed 32-round magazine was difficult to load and could feed unreliably when not looked after. The Patchett prototype performed well during initial testing in 1943, but later sand, mud and arctic testing of the Patchett against various other submachine guns highlighted the limitations of the STEN magazine – regardless of the weapon using it.

Capture 04_Moment
Patchett’s Original Toolroom prototype (Matthew Moss)

At some point in 1945, Patchett developed a series of new magazines, a 20-round ‘Patrol’ magazine, a 40-round ‘Standard’ magazine and a 60-round ‘Assault’ magazine. By late 1946, these had been superseded by a 35-round magazine designed to fit into the basic pouch of the British Army’s 1944 Pattern web equipment.

Patchett addressed the STEN magazine’s shortcomings by designing his magazine with a curve which allowed the slightly tapered 9×19mm rounds to feed more reliably. He also replaced the traditional magazine follower with a pair of rollers which minimised friction and allowed dust, grit and dirt to be rolled out of the way improving reliability. Patchett’s magazine was designed so it could be economically stamped from sheet metal and folded and spot welded into shape. It was also simple to disassemble for cleaning and requires no tools for disassembly.

Capture 04_Moment
George Patchett’s US patent for his roller magazine follower (US Patent Office)

By 1951 the magazine had been largely perfected but a trials report suggested that the magazine’s feed lips needed to be reinforced. Despite this the Sterling was said to be “better than all other weapons tested.” Following further development and testing the L2A1 Sterling submachine gun was eventually adopted in the summer of 1954. We will cover the development, adoption and service of the Sterling at a later date.

In 1952, Patchett added a pair of strengthening ribs to the inside of the magazine which also further reduced friction on the rollers. He also replaced the oval follower spring with a more efficient circular one with the ribs acting to hold it in place. The final production magazines held 34 rounds and were substantially easier to load than the earlier STEN’s.

Capture 04_Moment
Patchett’s US patent for his circular magazine spring held in position by the stamped magazine body (US Patent Office)

The L2A1/MkII, introduced in 1954, was the first Patchett to incorporate an angled magazine housing which improved feeding reliability from the Patchett’s patented curved, double stack, double feed magazine. The Sterling’s magazine housing was angled forward slightly at 82-degrees.

Capture 04_Moment
Diagrams showing an L1A2 magazine (British Army Manual)

The magazines used by the British military differed from Patchett’s design. The British government, perhaps unwilling to purchase the rights to manufacture Patchett’s design, developed the ‘Magazine, L1A2’. Nearly two million of these were built at Mettoy, Rolls Razor, ROF Fazakerley and the Woolwich Royal Laboratories. The L1A2 magazine was slightly simpler to manufacture but retained Patchett’s roller follower while the magazine’s body was made from two, rather than four, pieces of stamped steel and electrically welded together. The government-designed magazine is 5cm (2 inches) longer than Sterling’s magazines.

Capture 04_Moment
disassembled Sterling commercial-pattern magazine (Matthew Moss)
Capture 04_Moment
Rear edge of the magazine, with Sterling factory markings (Matthew Moss)

The example magazine seen above and in the accompanying video is Sterling-made and is marked with the company name and patent numbers. We can see the folded sheet metal construction and the overlaps at the rear of the magazine body.

Capture 04_Moment
Patchett’s patented-roller follower and circular amazing spring (Matthew Moss)

When Canada adopted the C1, a modified version of the Sterling, they dispensed with Patchett’s roller system and designed their own magazine which held 30, rather than 34 rounds, but could be used in all Sterling-pattern guns.

On the front of the magazine is an over-insertion stop built into the edge of the magazine body, at the rear is another magazine stop with a flat spring which limits rattle and helps properly align the magazine in the breech for optimal feeding.

With out patented swiss pointing device we can see the base of the magazine catch which interfaces with the magazine. The magazine release button is wide and quite ergonomic. We can see from this angle how the magazine housing is angled forward.

Bibliography:

The Sterling Submachine Gun, Matthew Moss (2018)
[Copies of the book are available here]


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

US Medium Tanks of the 1920s

I recently came across some archival footage which gives some glimpses of some quite rare US medium tanks developed in the 1920s. The footage features the M1921, the T2 Medium Tank and a Christie Tank.

An M1921 Medium Tank (US National Archives)
An M1921 Medium Tank (US National Archives)

The US tank arm subsequently abandoned the various medium tank designs they’d been working on and shifted towards cheaper light tanks. Always special finding archival footage, hope you enjoy the video.

Check out our other videos on early tank here


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

M56 Scorpion – Lightweight Self-Propelled Gun

The need for a lightweight self-propelled anti-tank gun was identified in the late 1940s. The T101 development program took just over 5 years and $2.5 million dollars to develop what became the M56.

DSC_0554wm
Front, right view of the M56 Scorpion (Matthew Moss)

The M56 was intended to act as an airmobile support weapon for the US Army’s airborne forces that was capable of traversing muddy, marshy, sandy and snowy terrain. Airborne infantry have historically been lightly armed and sometimes struggled against enemy forces equipped with armour. Attempts to level the playing field with glider transported anti-tank guns or even super light tanks could only do so much. Airborne operations during world war two proved light tanks, like the M22 Locust, were out-gunned, under-armoured and largely useless. While light artillery proved effective it lacked mobility and while infantry anti-tank weapons like the Bazooka were extremely useful they were close quarter weapons.

T101 US Nat Arc
The T101 – Prototype M56 (US National Archive)

In response the US Army decided to abandon one of the points of the classic ‘iron triangle’ of armoured vehicle design all together, sacrificing protection for firepower and mobility. The unarmoured 16,000 lb (7 tonne) vehicle could be dropped from a transport plane to support paratroops and later heliborne air cav units.

1518188238_2
An M56 (US Army)

The M56 was developed and manufactured by the Cadillac Motor Car Division of General Motors, a pilot version was completed by 1955. The pilot model, designated the Full-Tracked Self-Proppelled Gun T101 is seen in this photograph from October 1955. When the vehicle finally entered production in 1957 it was largely identical to the T101 except for changes to the location of the radio, the design of the gun’s muzzle device, the hinged flaps on the gun shield were abandoned and the sand skirts were also abandoned. The Scorpion had no secondary armament and no armour. Protection for its 4-man crew amounted to nothing more than a gun shield, which also has a window for the driver.

DSC_0549wm
A view of the ‘fighting compartment’ of the M56, the ammunition storage rack is missing(Matthew Moss)

DSC_0551wm
View of the driver’s position (Matthew Moss)

The 90mm M54 high velocity gun was mounted on a pintle in the centre of the vehicle with the driver on the left and the vehicle commander, loader and gunner sat around the gun. The gun could be traversed 30-degrees left and right and had 10-degrees depression and up to 15-degrees  elevation. At the rear of the vehicle was an ammunition store that held 29 90mm rounds. The main ammunition used with the M54 would have been the M318 armour piercing round but it could chamber any of the other 90mm ammunition then in US service. Sadly the ammunition store and breech of the gun aren’t present on this example.

1518188279_7
An M56 in action, note the ammunition storage racks (US Army)

The gun’s impressive recoil, even with a pair of recuperators, hit the Scorpion and the crew manning it hard, the footage shows just how powerful the recoil was. In this contemporary footage we can see that the front wheel almost bounces off the ground. Note also the semi-automatic action that opens the breech and ejects the spent shell casing after the gun is fired.

The vehicle was powered by an air-cooled petrol engine that produced 200hp. Capable of a maximum speed of just over 28mph.

DSC_0548wm
Front, left view of the M56 (Matthew Moss)

Perhaps its most interesting feature is that it runs on four pneumatic road tyres, rather than metal road wheels, enclosed in a 20in wide track. The track was made up of two bands of rubber and steel cross pieces. There’s a sprocket at the front and an idler at the rear for tensioning the track. This configuration was chosen to reduce weight and it also minimised the ground pressure of the vehicle.

Production of the M56 ended in 1959, after around 325 had been produced. While most of these entered US service, 87 were purchased by Morocco in 1966 while a further 5 were used by the Spanish Marine Corps.

1518188259_9
M56s in Vietnam (US Army)

While the M56 was slightly more mobile across country, in reality it wasn’t much better than a standard jeep equipped with a M40 recoilless rifle. Despite the Scorpion’s shortcomings it remained in service into the early 1970s and saw action during the Vietnam War with the 173 Airborne Brigade, which had a company of 16 M56s. In Vietnam the more capable and better protected M551 Sheridan saw wider use and what action the Scorpions did see was largely acting in direct fire support.

Special thanks to Battlefield Vegas for allowing us to film and feature their M56.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Specifications:

Length: 19ft 2in / 5.8m

Height: 6ft 9in / 2m

Width: 8ft 4in / 2.5m

Weight: 7 tons

Powerplant: Continental A01-403-5 gasoline engine

Speed: ~28mph / 45km

Armour: Unarmoured

Armament: 90mm M54 Gun


Bibliography:

TM 9-1300-203, Artillery Ammunition (1967)

M50 Ontos and M56 Scorpion 1956–70: US Tank Destroyers of the Vietnam War, K.W. Estes (2016)

Airborne “Scorpion”, A. Haruk, (source)

Bring Up The PIAT! – A Bridge Too Far Scene Analysis

A Bridge Too Far (1977) is undoubtedly a classic of the war film genre, massively ambitious it attempts to tell the story of Operation Market Garden. One of the key stories told is that of 2 PARA besieged in Arnhem awaiting relief from XXX Corps.

Capture 04_Moment
A PIAT waits for the ‘Panther’)

Perhaps one of the most enduring scenes sees Anthony Hopkins, portraying 2 PARA’s commanding officer Johnny Frost, spot an enemy tank approaching and bark the order: “Bring Up The PIAT!”

Capture 04_Moment
Set photo from A Bridge Too Far (Airborne Assault – PARA Museum)

If you follow me over on twitter you’ll know that I use this famous line as a hashtag (#BringUpThePIAT) whenever I discus the Projector, Infantry, Anti-Tank. I thought it would be fun to break down the iconic scene and see just how accurate it is.

The scene itself is actually quite authentic. The PIAT gunner misses, and that isn’t too surprising as despite being a platoon weapon not everyone had a lot of training on them. While the PIAT misses twice – this is because the gunner was firing from an elevated position. This makes judging the range and lead which should be given to an advancing tank all the more difficult. It is something we see in contemporary accounts, including in Arnhem Lift: Diary of a Glider Pilot, by Louis Hagen. Hagen describes firing a PIAT at a self-propelled gun (likely a StuG) from an attic during the fighting in Arnhem: “The direction was perfect, but it fell about twenty yards short.” Similarly, there are accounts from Home Army members fighting in Warsaw during the Uprising which describe exactly the same thing.

Capture 04_Moment
The second PIAT shot in A Bridge Too Far

While the flash we see in the scene might be excessive the recoil is quite authentic. While writing my book on the PIAT, I did a lot of research into the cultural impact of the PIAT and the numerous films it appeared in since World War Two. I recently wrote an article about the numerous films it has appeared in, you can read that here.

Perhaps the most important and realistic appearance was its first, in the fascinating 1946 film ‘Theirs Is The Glory‘. It’s a unique film that was filmed entirely on location with from veterans of the battle making up most of the cast and help from the British Army’s Army Film and Photographic Unit.

The PIAT appears twice in the film, scene some PARAs are trying to fight through to Arnhem but have been pinned down by what appears to be a French Char B. As a sidenote captured Char B1’s in German service were present in Arnhem).

Capture 04_Moment
‘Theirs Is The Glory’ Film Poster (Airborne Assault – PARA Museum)

The PIAT team are seen to move to the flank to get a good shot at Char B. The short scene gives a good indication of how the No.2 would load the PIAT as well as showing the rate of fire possible – a good team could get off five rounds a minute. Theirs Is the Glory also features another brilliant PIAT scene with Corporal Dixon seen knocking out a Panther

Capture 04_Moment
PIAT Team in action in ‘Theirs Is The Glory’

I would highly recommend both films as they are both interesting depictions of the battle and both good representations of the PIAT in action.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.