STEN Magazine Loaders

While the ongoing Coronavirus pandemic has prevented some archival research I had planned which would have informed much of the STEN series, our good friend Richard at the Vickers Machine Gun Collection and Research Association, has come to our aid and we’re able to cover some of the loading accessories developed for the Sten’s magazines.

As we know the Sten uses a 32-round double stack, single feed magazine which can trace its origins back through the Lanchester Machine Carbine to the Haenel MP28,II’s magazine designed by Hugo Schmeisser [patented in 1931].

Sten Magazine, inert 9x19mm rounds and MkII and MkIV magazine fillers

The nature of the single feed makes the magazine difficult to load by hand with the last few rounds very hard to insert. So a series of four marks of ‘magazine fillers’ were developed. These are described in the British Army’s official List of Changes in February 1943.

The MkI is described as consisting of “a lever mounted on a short case which conforms to the shape of the magazine. It is hand operated, the loading lever being given a rocking motion during filling. The MKI slipped over the top of a magazine with a rivetted spring tab which indexed into a notch in the front of the Sten mag.

A cutaway showing the MkII filler

The MkII is very similar but simplified by having the spring catch mounted on the rear instead of the side and engaged a “small rectangular slot on the magazine”. The rear of the spring is turned up slightly to allow the user to remove its from the magazine.

The MkIII, which is possibly the rarest of the fillers, is described as:

“hand operated but of different design from the MkI and MkII. It consists essentially of a spring loaded vertical plunger which is attached externally to a case, the latter to assemble on the magazine. There is no retaining catch. It comprises the following parts:

Case. Is a rectangular shaped steel pressing with a tube of rectangular section welded thereto. The latter, which houses the plunger and spring, has a hole trilled at the lower end to accommodate a pin which restricts the amount of movement of the plunger and acts as a stop for the compressing spring.

Plunger, loading. Is made of two laminated steel strips welded together the top part of which is set to form a handle. The body of the plunger is slotted to accommodate the compression spring. The top part is splayed to form a suitable contact with the cartridge.”

List of Changes, Feb. 1943
Sten accessories including a sling and a MkII magazine filler

The other more common filler is the MkIV. Which is a much simpler design with a loading lever mounted on top of a clip which is attached to the rear of the magazine body and retained by a spring similar to that of the MkII.

Rich has very kindly demonstrated the use of the two most common fillers – the MkII and the simpler MkIV. It takes Rich just under 2 minutes to load that magazine, but he was doing his best to show various angles and unlike a British soldier during the war he hasn’t regularly loaded magazines with one of these fillers either. Despite that the clip gives a good idea of how fast you could load a mag once you’re in the groove.

With the MkIV filler Rich was able to load the mag in about 1 minute 15 seconds, the stability of resting the base of the mag on the table helped with the MkIV’s simpler design.

Manual diagram showing both the MkII and MkVI

Also, as a follow on to our previous episode looking at the Sterling Submachine Gun’s magazine Rich has also demonstrated the loading of a Sterling mag to its 34 round capacity. No magazine filler needed with George Patchett’s double-stack, double feed magazine.

Massive thanks to Richard for taking the time to film the clips used in the video. please do go and check out Richard’s channel and www.vickersmg.org.uk.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

The Sterling Submachine Gun – Magazine

In May 1946, George Patchett patented a new curved magazine which would become one of the Sterling’s most recognisable features. It addressed some of the serious shortcomings of the STEN’s magazine.

George Patchett’s machine carbine, Which later that came to be known as the Sterling, had been initially designed to use the standard STEN magazine. This makes complete sense as not only was the STEN’s magazine readily available but it stood to reason that the British Army would prefer to retain the large number of magazines it already had in stores.

Capture 04_Moment
A Sterling L2A3 with a disassembled Sterling commercial-pattern magazine (Matthew Moss)

The STEN’s magazine is, however, the gun’s weakest link. Its a double-stack, single feed 32-round magazine was difficult to load and could feed unreliably when not looked after. The Patchett prototype performed well during initial testing in 1943, but later sand, mud and arctic testing of the Patchett against various other submachine guns highlighted the limitations of the STEN magazine – regardless of the weapon using it.

Capture 04_Moment
Patchett’s Original Toolroom prototype (Matthew Moss)

At some point in 1945, Patchett developed a series of new magazines, a 20-round ‘Patrol’ magazine, a 40-round ‘Standard’ magazine and a 60-round ‘Assault’ magazine. By late 1946, these had been superseded by a 35-round magazine designed to fit into the basic pouch of the British Army’s 1944 Pattern web equipment.

Patchett addressed the STEN magazine’s shortcomings by designing his magazine with a curve which allowed the slightly tapered 9×19mm rounds to feed more reliably. He also replaced the traditional magazine follower with a pair of rollers which minimised friction and allowed dust, grit and dirt to be rolled out of the way improving reliability. Patchett’s magazine was designed so it could be economically stamped from sheet metal and folded and spot welded into shape. It was also simple to disassemble for cleaning and requires no tools for disassembly.

Capture 04_Moment
George Patchett’s US patent for his roller magazine follower (US Patent Office)

By 1951 the magazine had been largely perfected but a trials report suggested that the magazine’s feed lips needed to be reinforced. Despite this the Sterling was said to be “better than all other weapons tested.” Following further development and testing the L2A1 Sterling submachine gun was eventually adopted in the summer of 1954. We will cover the development, adoption and service of the Sterling at a later date.

In 1952, Patchett added a pair of strengthening ribs to the inside of the magazine which also further reduced friction on the rollers. He also replaced the oval follower spring with a more efficient circular one with the ribs acting to hold it in place. The final production magazines held 34 rounds and were substantially easier to load than the earlier STEN’s.

Capture 04_Moment
Patchett’s US patent for his circular magazine spring held in position by the stamped magazine body (US Patent Office)

The L2A1/MkII, introduced in 1954, was the first Patchett to incorporate an angled magazine housing which improved feeding reliability from the Patchett’s patented curved, double stack, double feed magazine. The Sterling’s magazine housing was angled forward slightly at 82-degrees.

Capture 04_Moment
Diagrams showing an L1A2 magazine (British Army Manual)

The magazines used by the British military differed from Patchett’s design. The British government, perhaps unwilling to purchase the rights to manufacture Patchett’s design, developed the ‘Magazine, L1A2’. Nearly two million of these were built at Mettoy, Rolls Razor, ROF Fazakerley and the Woolwich Royal Laboratories. The L1A2 magazine was slightly simpler to manufacture but retained Patchett’s roller follower while the magazine’s body was made from two, rather than four, pieces of stamped steel and electrically welded together. The government-designed magazine is 5cm (2 inches) longer than Sterling’s magazines.

Capture 04_Moment
disassembled Sterling commercial-pattern magazine (Matthew Moss)
Capture 04_Moment
Rear edge of the magazine, with Sterling factory markings (Matthew Moss)

The example magazine seen above and in the accompanying video is Sterling-made and is marked with the company name and patent numbers. We can see the folded sheet metal construction and the overlaps at the rear of the magazine body.

Capture 04_Moment
Patchett’s patented-roller follower and circular amazing spring (Matthew Moss)

When Canada adopted the C1, a modified version of the Sterling, they dispensed with Patchett’s roller system and designed their own magazine which held 30, rather than 34 rounds, but could be used in all Sterling-pattern guns.

On the front of the magazine is an over-insertion stop built into the edge of the magazine body, at the rear is another magazine stop with a flat spring which limits rattle and helps properly align the magazine in the breech for optimal feeding.

With out patented swiss pointing device we can see the base of the magazine catch which interfaces with the magazine. The magazine release button is wide and quite ergonomic. We can see from this angle how the magazine housing is angled forward.

Bibliography:

The Sterling Submachine Gun, Matthew Moss (2018)
[Copies of the book are available here]


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.

Madsen M50 – Live Fire

The M50 is one of the quintessential early Cold War submachine guns. Cheap, simple and utilitarian. It evolved from the earlier M46 and was developed by Dansk Industri Syndikat in Denmark. The M50 has a simple blowback action, is chambered in 9×19mm and feeds from 32-round double stack single feed magazines.

The weapon’s has a clam-shell like receiver that hinges at the rear and allows the barrel, bolt and recoil spring to be removed. The M50’s folding stock has a leather cover and while the length of pull is a little short it provides a decent cheek weld.

New Movie (2).Movie_Snapshot
Madsen M50 (Matthew Moss)

The M50 has a relatively slow rate of fire of around 500 rounds per minute which makes it very easy to make single shots while in full-auto. The sights are extremely simple with a single rear peep sight.

It has manual safety switch on the left side of the receiver which locks the sear in place and a spring-loaded grip safety just behind the magazine well. The amount of pressure needed to disengage it is minimal and a firm firing grip of the magazine is all that is needed. 

DSC_0242 (1)
Right side of the Madsen M50 with stock folded (Matthew Moss)

The Madsen went through a number of changes with various models having different magazine release types, selectors and manual safety positions. The M53 introduced in 1953, fed from a curved magazine and had an improved magazine release. Some models had an additional fire-selector and the safety moved back above the trigger. Some models retained the forward grip safety while others moved it to behind the pistol grip. Some patterns of M53 also had a barrel shroud for mounting a bayonet as well as added wooden panels on the pistol grip.

DSC_0239 (1)
Left side of the Madsen M50 with stock deployed and magazine removed, not the improved magazine release (Matthew Moss)

We’ll have a more in-depth look at the Madsen M50 in the future looking at the various models in some more detail.

Special thanks to my friend Chuck at Gunlab for letting me take a look at his M50.


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Specifications:

Overall Length: 31in w/stock deployed
Weight: ~7 lbs
Action: Blowback, open bolt
Capacity: 32-round box magazines
Calibre: 9×19mm

The Sten Gun, Its Name and the Men Behind It

The Sten is one of Britain’s iconic Second World War Small arms. Two men are principally responsible for its development Colonel Reginal Vernon Shepherd and Mr. Harold John Turpin a pair of small arms and engineering experts with considerable experience.

Turpin was born in Kent in 1893, served his apprenticeship as a draughtsman in Erith and in 1922, he joined the drawing office at the Royal Small Arms Factory Enfield – Britain’s principal state small arms centre.

1
British Army manual illustration

Reginald Shepherd was born in 1892, received an Bachelor of Science Degree from Leeds University in 1912. In October 1914, he joined the West Yorkshire Regiment as a second lieutenant, serving in Gallipoli and Egypt. After the war, with his engineering background, he assigned as 2nd Assistant Superintendent at the Design Department at RSAF Enfield in December 1922, and promoted to captain.

The two men found themselves joining Enfield at around the same time. In November 1933, Shepherd, now a major, was appointed Inspector of Small-Arms (Class 2) at Enfield and assisted in getting the Bren light machine gun into service. He remained at Enfield until 1936, when he retired from the army and spent a short spell at BSA before being recalled. In late 1939, Major Shepherd returned to active service and once again took up the position of Inspector of Armaments, this time at the Ministry of Supply Design Department at Woolwich Arsenal.

RSAF - Ra
Inside RSAF Enfield (Royal Armouries)

By the outbreak of the Second World War Turpin had become the senior draughtsman at Enfield and when the development of the Lanchester Machine Carbine began he was paired with Major Shepherd to draw up technical drawings for the gun’s production.

The two men decided that a simpler, cheaper submachine gun could be produced and in December 1940 set about designing it, with Turpin in the lead. During the Winter of 1940-41 the first prototypes were built. Development of the first Sten – the T40, was completed on 8th January 1941, taking just 36 days.

14 pilot models were ordered but only two were completed by engineers at the Philco Radio Works in Middlesex: T-40/1 and T-40/2. The gun was initially designated the ‘T-40’ or Turpin, 1940. By the end of January 1941, it had become known as the ‘ST Machine Carbine’. The ‘Carbine, Machine, STEN, MkI’ was approved for issue on 7th March, 1941, with 100,000 guns ordered.

How did the gun become known as the ‘STEN’ and what did Sten stand for?

We know that the ‘S’ stands for Shepherd and the ‘T’ for Turpin, but what about the ‘EN’ – it is generally accepted to represent ‘Enfield’. Why? Because RSAF Enfield is synonymous with British military firearms. Additionally the Bren light machine gun’s name is a portmanteau of ‘BR’ from Brno, the location of the Czech factory the zb.26/30 originated from, and ‘EN’ for Enfield, the British factory that anglicised the design for British manufacture and service.

Enfield, however, wasn’t where the Sten was designed. Turpin and Shepherd claimed that most of the work on the design had been done out of hours. Additionally, during the winter of 1940, the Armament Design Department was relocated, from Enfield to a former Drill Hall in Cheshunt, Hertfordshire to escape the bombing of London.

While the Sten may not have been designed at Enfield, the first prototype was partially assembled there with work also done at Turpin’s own home workshop. A further 46 pre-production pilot models were later ordered from RSAF Enfield, in February 1941.

name insert

Intriguingly, early accounts suggest that ‘EN’ may have stood for ‘England’ – not ‘Enfield’. In October 1942, the fifth instalment of ‘Know Your Weapons’, a semi-official series of weapons manuals printed by the publisher Nicholson & Watson, explains that ‘EN’ did in fact stand for ‘England’.

In June 1943, Turpin penned a semi-anonymous article for ‘The Model Engineer’, about the design and development of the gun, which repeated this claim. An October 1943, article in the US Popular Mechanics magazine, entitled ‘Machine Guns from Backyard’, includes a supposed quote from the inventors explaining that the “E and N stood for England.”

585369
‘The Sten Carbine’, Model Engineer, Turpin, June 1943

A more official account came in June 1949, at a hearing of the Board of the Royal Commission Awards to Inventors (a board set up to reward inventors who had done important war work). One of the board members Lord Justice Sir Lionel Cohen asked Shepherd: “Why was it called the Sten?” The colonel replied: “It was called the Sten by the then Director General of Artillery. The ‘S’ was from my name, the ‘T’ from Mr. Turpin, who was my draughtsman and who did a very large amount of the design, and the ‘EN’ was for England. That is the origin of the name, for which I accept no responsibility.” This suggests that the ‘EN’ standing for ‘England’ may have originated from the upper echelons.

Sadly, there was no officially published explanation of the name as official manuals rarely go into superfluous detail. In 1948, however, Ian Hay published R.O.F. The story of the Royal Ordnance Factories, 1939-1948 in which he stated the ‘EN’ was a reference to the Enfield factory. Similarly, another early published account, D.M. Ward’s 1946 The Other Battle, a history of BSA, also suggested it represented the factory name.

In truth it is difficult to know exactly what the ‘EN’ stood for. It may be that both Enfield and England were discussed and used by various individuals and offices. There may have been an element of propaganda to including ‘England’ in a weapon’s name which led senior officers to push this in the press and direct the gun’s inventors to suggest this was the case too. Of course the authors of those earlier books may have mistakenly believed ‘EN’ stood for Enfield, as it does in Bren. Personally, I’m inclined to follow the primary sources attributed to the two men responsible for the design, and believe it initially stood for England.

Other War
The Other Battle, D.M. Ward, (1946)

Shepherd was awarded an OBE in January 1942, and became the Assistant Chief Engineer Armament Design (A/CEAD), he was promoted to Lt. Colonel in August 1943. He retired from active duty at the age of 55, in January 1947, and was removed from the reserve list. He was granted the honourary rank of colonel. He died in April 1950, aged 58. Turpin retired from RSAF Enfield in 1953, and died in April 1967, aged 74.

Beyond a pair of discretionary payments, £1,500 to Shepherd and a small payment of £200 to Turpin, neither man was officially rewarded as they were deemed to have essentially done what they were paid for, designing small arms. Scant reward and recognition for a weapon which became one of the key wartime small arms of the British and Commonwealth forces.

Our thanks also to Jonathan Ferguson, of the Royal Armouries, for sharing his thoughts on the ‘Enfield’ vs ‘England’ debate.


Bibliography

The Sten Machine Carbine, P. Laidler, (2000)
R.O.F. – The Story of the Royal Ordnance Factories, 1939-1948, I. Hay, (1949)
The Other Battle, D.M. Ward, (1946)
The Sterling Submachine Gun, M.J. Moss, (2018)
The Sten Gun, L. Thompson, (2012)
‘Sten & Bren Guns’, Know Your Weapon #5, (Oct. 1942)
‘The Sten Carbine’, Model Engineer, 3 Jun. 1943, H.J. Turpin
Board of the Royal Commission Awards to Inventors – 1946-49
‘Machine Guns From Backyard’, Popular Mechanics, Oct. 1943


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

Steyr MPi 81

Developed in the late 1960s and introduced in 1969/70 the MPi 69 was Steyr’s entry into an already crowded European submachine gun market. Heavily influenced by the Israeli Uzi it had a bolt which telescoped over the barrel and fed from a box magazine that was inserted through a magazine well-come-pistol grip.

The MPi 69 weighed 6.5lbs (2.93kg) unloaded and had a polymer lower receiver into which a stamped metal upper inserted. Unlike the Uzi it had a collapsing, rather than folding stock, similar to the M3 submachine gun’s, and was cocked not by a handle but by pulling the sling (which was acted on the bolt) to the rear.

Steyr Mpi61 b.png
Steyr MPi 69 (Rock Island Auction Company)

The MPi 69 remained in production into the early 1980s when it was replaced by the improved MPi 81. Moving away from the slick-cocking ‘gimmick’ the MPi 81 had a conventional, non-reciprocating, charging handle on the left side of the receiver. The MPi’s polymer lower allows it to be a pound lighter despite being slightly longer as a result it also balances better than the standard Uzi carbine.

ffdgfdgdfg.png
Steyr MPi 69 diagram (Steyr Manual)

The MPi submachine guns fed from 25 or 32 round box magazines and both guns had a heel-type magazine release paddle in the base of the pistol grip. They also shared their magazines with the AUG 9x19mm submachine gun conversion. Check out our earlier video on the Steyr AUG conversion here.

steyr mpi2.png
Steyr MPi 81 (Rock Island Auction Company)

The MPi submachine guns fire from an open bolt and had a 10in barrel and has a push through safety with settings for safe, semi and full auto and unlike the Uzi it does not have a grip safety – simplifying manufacture.

The MPi also has a progressive trigger which when set to full-auto will allow the user to fire semi when pulled to the first stage and full when pulled fully to the rear. While the MPi 69 had a cyclic rate of around 500 per minute, the MPi 81 increased this rate to ~750rpm.

22222222222222222.png
Steyr MPi 69 disassembly diagram (Steyr Manual)

The MPi can be field stripped by simply rotating the receiver end cap up 90-degrees and pulling the bolt out the rear. The gun can be further stripped but the moulded polymer lower receiver can be difficult to remove from the upper. Like the Uzi the barrel nut is unscrewed to remove the barrel.

Steyr MPi81.Movie_Snapshot.jpg
The MPi 81 fully disassembled (Vic Tuff)

It is unclear just how many MPi submachine guns were produced but they didn’t see any significant contracts beyond a few small sales to police forces and militaries.

The MPi 81 remained in production into the early 1990s when it was replaced by the smaller and more compact Steyr TMP in 1992. In turn the TMP design was sold to B&T a decade later.

Our thanks to the collection that let us take a look at this MPi 81 and to our friend Miles Vining for sharing some of his shooting footage of the MPi 81 with us, check out his video here and more of his work at www.silahreport.com.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Specifications (from Steyr brochure):

Overall Length: Deployed – 26.6in (67.5cm) / Collapsed – 18.3in (46.5cm)
Barrel Length: 10.2in (26cm)
Weight (empty): 6.28lbs (2.85kg)
Action: Blowback
Capacity: 25 or 32-round box magazines
Calibre: 9×19mm
Rate of Fire: ~750 rpm


Bibliography:

Steyr MPi 69 Manual (source)

Steyr MPi 81 Manual (source)

 

How to Deploy the Hotchkiss Universel

Here’s a short video looking at how the unusual Hotchkiss Universel deploys from its compact, folded position. The whole process takes just seconds. Impressive engineering but within a couple of years the Universel would be surpassed by far more compact, ergonomic and serviceable designs like the Uzi and PM-63.

Check out our full video and article on the Universel here.

Hotchkiss Type Universal

 

The need for compact weapons capable of being carried with ease by troops who would be getting in and out of vehicles, jumping from planes and fighting in close quarters had been proven during World War Two.  While it may look unusual the Hotchkiss ‘Type Universel’ was an extraordinary attempt at creating an extremely compact submachine gun.

DSC_0380a
Right-side Hotchkiss Type Universel (Matthew Moss)

Submachine guns had proven themselves to be an useful weapon during the war, their small size and high rate of fire made them invaluable, especially in close-quarter situations. The post-war French army found itself armed with a plethora of surplus submachine guns, which included: the German MP40, the British STEN and the American Thompson as well as their own pre-war MAS-38s, in 7.65x20mm Longue, which had been designed before the war. By 1946 they had already begun the process of selecting a new, more compact submachine gun. Seeking to standardise on a single weapon and calibre they selected 9x19mm and launched a programme to find a new submachine gun or Pistolet Mitrailleur.

mas 38 1a
MAS-38 (Rock Island Auction Company)

The French War Ministry launched a call for state arsenals and civilian manufacturers, such a Hotchkiss and Gevelot/Gevarm, to submit submachine guns for trials. Hotchkiss submitted the Type 010 or Type Universel, often anglicised as Universal, despite this the guns are typically marked ‘CMH2’ – ‘Carabine Mitrailleuse Hotchkiss’.

Chambered in 9x19mm, the Hotchkiss fed from MP40-pattern magazines, used the ubiquitous blowback action, it fired from a closed bolt and had a cyclic rate of approximately 650-rounds per minute. The Hotchkiss is select fire with a push through selector that allows for semi and full-auto fire. It appears that the weapon’s only safety mechanism is to close the ejection port cover and lock the bolt in place – much like a US M3 Grease Gun.

DSC_0376 (1)
Right side collapsed Hotchkiss Type Universel (Matthew Moss)

Designers went to extraordinary lengths to minimise the size of the Universel. Not only did the stock fold beneath the barrel but the magazine well and magazine could be rotated forward to sit beneath the barrel with the magazine fitting between a U-shaped cut-out in the butt stock. The weapon is a curious mix of stamped metal and complex machining with a difficult to machine bolt and barrel contrasting with a stamped sheet metal lower receiver and wide stamped trigger.

DSC_0378
Left side collapsed Hotchkiss Type Universel (Matthew Moss)

In 1950 Hotchkiss sales material described their weapon as “the individual defense weapon meeting the requirements of the most modern Armies and Police. Folded up, it is very compact, easy to transport, conceal and parachute. It is quick to set up and comes unfolded in the form of a carabiner…”

The weapon’s pistol grip was hollow and when folding up the stock, the grip folds forward to cover the trigger. The Universel’s most interesting feature is its telescoping barrel which retracts several inches inside the receiver. These features brought the Hotchkiss’ length down from 30.6 inches (77.6cm) when the stock was extended, to 22 inches (54cm) with the stock folded, and an impressive 17.25 inches (43.5cm) when fully collapsed. The nature of how the pistol grip folded with the stock meant the weapon could not be fired with its stock collapsed. When fully collapsed the weapons’ depth was just 6 inches or 15.3cm.

Centrefire automatic submachine gun - Hotchkiss Universal (about 1949-1952) (1)
A partially collapsed Hotchkiss, with magazine in folded position and barrel extended (Royal Armouries)

To Deploy:

First we unfold the stock by pushing the knurled collar forward to unhook it from the base of the magazine well. When fully unfolded a spring detent locks into the rear of the receiver.

At the same time the pistol grip also unfolds. If we had a magazine loaded into the weapon we would deploy the barrel first – in order to allow the magazine to slide back through the magazine well and fold down to lock into position. The bolt follows the barrel forward so once the magazine is locked into position the weapon has to he be charged to chamber a round.

The collapse the weapon again, first fold the stock, then depress the lever just behind the trunnion to unlock the barrel, push the barrel assembly and bolt to the rear until it locks.

DSC_0382a
Left side Hotchkiss Type Universel (Matthew Moss)

The Universel’s extreme compactness was both its best and worst feature, the complexity of having every protruding part fold or retract made the weapon expensive to produce. It also gave the weapon poor ergonomics with a narrow butt, an uncomfortable pistol grip and narrow sights which weren’t ideal for quick target acquisition.

The Hotchkiss was one of a whole host of compact folding submachine guns developed after World War Two. These included the MAS MLE 1948, the MAC Mle 1947 and of course the MAT-49 from French state-arsenals. The French guns were by no means the first to have folding magazines, that concept dates back to submachine guns like the SIG MKMO. Incidentally, SIG’s last developmental iteration of their submachine guns, the MP48, was also developed in the late 1940s and retained the MKMO’s folding magazine housing.

DSC_0372
Close up of the Hotchkiss Type Universel’s receiver (Matthew Moss)

A 2001 article from the Gazette des Armes, by Michel Malberbe, includes an account from a Legionnaire sergeant who describes using the Hotchkiss in Indochina:

“I saw for the first time the submachine gun Hotchkiss in ‘Indo’. We were responsible for the security of the RC4 [Route Coloniale 4], and the staff sent us wooden cases containing these famous submachine guns. As the documents were not very complete, our company commander… had trouble explaining how it worked. It was quite funny, because folded, this submachine gun did not look very serious. It was like a rectangular scrap metal package… We used it for the first time on the Lang Son side, during a serious collision between the Viets and a convoy… I remember that this machine worked very well. But it lacked a little precision. Anyway, it was much better than the small MAS-38 submachine gun, whose magazine always blocked [jammed] at the wrong time! On the other hand, I think I remember that the Hotchkiss did not stand up to mud and that it was misery to clean it. In addition it was quite difficult to unfold because of the buttons found everywhere. We never knew which one to press. We, in any case, always transported them in the firing position…”

While the Type Universel definitely wouldn’t win any prizes for its aesthetics, it was a ambitiously-engineered and well-built submachine gun. Despite this the design was simply too complex, as we have heard troops in the field rarely took advantage of its compact features preferring to carry the weapon at the ready. The Universel sacrificed a lot to achieve its compactness and the ergonomics of the weapon leave a lot to be desired with an extremely small butt and a hollow pistol grip that just feels wrong.

It is believed that in total just 7,000 Hotchkiss Universels were produced between 1948 and 1952. The French military rejected the Hotchkiss feeling the weapons was too complex and too expensive to manufacture. Instead, the MAT-49 submachine gun, designed by Tulle, was eventually adopted. The MAT-49 also had a folding magazine housing making it almost as compact as the Universel but without its complexities.

DSC_0371
Close up of right side of the Hotchkiss Type Universel’s receiver (Matthew Moss)

While it underwent some field testing with the French in Indochina no major military contracts were won but small numbers were purchased by the French police, the colonial police in Morocco and some were sold to the military of Venezuela. The Universel would be one of the last firearms produced by Hotchkiss et Cie, who had built numerous armaments for the French army during the 19th and 20th centuries, before it closed its weapons manufacturing arm in the early 1950s refocusing on automobile manufacture.

Special thanks to Battlefield Vegas for allowing us to take a look at their Hotchkiss.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Specifications:

Overall Length: Deployed – 30.6in (77.6cm) / Collapsed – 17.25in (43.5cm)
Barrel Length: 10.6in (27cm)
Weight: 7.6lbs (3.4kg)
Action: Blowback, closed bolt
Capacity: 32-round box magazines
Calibre: 9×19mm
Rate of Fire: ~650 rpm


Bibliography:

‘La Carabine Mitrailleuse: Hotchkiss Modele 010’, Gazette des Armes #256, R. Out

‘Carabine Mitrailleuse Hotchkiss (CMH2) Type Universel’, Gazette des Armes #321, M. Malberbe

Hotchkiss Submachine Guns, Small Arms Review, J. Huon (source)

Submachine Guns, M. Popenker & A.G. Williams (2011)

Chinese Type 64 Suppressed Submachine Gun

The Type 64 is an integrally suppressed submachine gun designed in China in the early 1960s, taking several design elements from other Combloc small arms. The guns were manufactured at one of China’s State Factories (with the factory’s ‘66’ in a triangle marking in the left side of the receiver – this indicates the factory number, although available sources differ on which it refers to, either 66, 626 or 366).

right_h13_chinese_smg
Right side of the Type 64, with stock folded (Matthew Moss)

Designed concurrently with the Type 64 suppressed pistol during the 1960s, the Type 64 SMG was developed for Communist China’s special forces for use in clandestine operations. Chambered in the standard 7.62×25 ComBloc pistol round, the Type 64 functioned best with Type 64 subsonic ammunition, a special subsonic spitzer projectile variation of the standard 7.62mm pistol round. It did not chamber the low power 7.65x17mm round used by the Type 64/67 pistols.

DSC_0070
A close up of the weapon’s markings, including the State Factory 66 stamping (Matthew Moss)

The Type 64 fed from 20 or 30 round double stack magazines which were reportedly developed from or at least influenced by the Soviet PPS-43’s double stack, double feed magazines. The weapon used a conventional blowback action and fired from an open bolt. Its maximum effective range was approximately 200 metres with two position flip up sights ranging out at 100 and 200 metres.

The Type 64 had a milled receiver with lightening cuts and weighed in at 7.6lb or 3.5kg unloaded. It took its bolt from the Russian PPS-43 submachine gun and a trigger group inspired by the ZB vz.26 light machine gun’s, which was well liked by the Chinese military.

DSC_0071
The suppressor housing is unscrewed at the trunnion with an interrupted thread (Matthew Moss)

The Type 64 shared a number of external similarities with the standard Type 56 AK-clone including its pistol grip, safety lever and under-folding stock (which is similar but slightly different to the Type 56-I’s under-folding stock).

DSC_0067
The Type 64’s fire selector (Matthew Moss)

The weapon has a number different controls including a conventional AK-style safety-come-dust cover, on the right side of the receiver – which blocks the travel of the bolt. On the opposite side of the receiver it has a two-position fire selector for semi and full-auto – you can just about reach these when the stock is folded. The forward position is for semi and the rearward position is full-auto. Finally, the 64 also has an additional trigger block safety, taken from the SKS, which pivots forward to prevent the trigger from being pulled.

DSC_0054
A close up of the magazine release, trigger block safety and lever safety (Matthew Moss)

According to a report written in October 1971, by the Small Arms Systems Lab of the US Army Weapons Command Research and Engineering Directorate, the weapon has an extremely high rate of fire of over 1,300 rpm.

A cyclic rate that high was the result of a combination of back pressure from the suppressor, the ammunition used and its blowback action. The Type 64’s chamber was fluted with three longitudinal cuts to aid extraction at its high rates of fire. It should be noted, however, that the 1971 US army tests were carried out with standard velocity ammunition – rather than the specialised subsonic Type 64.

DSC_0251aaa
The Type 64 with stock deployed, left & right profiles (Matthew Moss)

The top cover is removed by pushing in what at first appears to be a spring-loaded detent, but is actually the recoil spring guide rod. The front of the top cover is held in the receiver by a lip which fits into a slot just above the breech. The top cover itself is a thin piece of stamped sheet metal with the serial number stamped at the rear.

DSC_0090
With the receiver cover removed and the action cocked. The Type 64 fires from an open bolt. Note the buffer at the rear of the receiver (Matthew Moss)

With the top cover removed we can see inside the action. The 64 has a single recoil spring held in place by a guide rod. At the rear of the receiver is a small plastic buffer, designed to both soak up some of the recoil energy and to help reduce action cycling noise. There is an ejector on the left side of the receiver and guide rails along which the bolt moves. To remove the bolt it is pulled fully to the rear and then tilt it upwards.

DSC_0094
A close up of the bolt face (Matthew Moss)

The Type 64 is a pretty compact weapon despite the length of its suppressor. It has an under-folding stock, with two spring-loaded buttons at the rear of the receiver which have to be pushed in to fold and unfold the stock. When folded the weapon is 25in (or 63.5cm) long, with the stock adding 8 inches when it is deployed. The weapon can be used with the stock folded, although some of its controls are partially obscured.

The suppressor is contained by a housing which attaches to the receiver by an interrupted thread. The Type 64’s barrel was ported with 36, 3mm vents at the muzzle-end while the suppressor has 12 metal dished baffles held captive on a pair of guide rods. The weapon’s sights are mounted on the suppressor housing which attaches to the receiver by an interrupted thread. Sadly, I didn’t have time to strip the suppressor itself but the photos below, from my friend Chuck over at Gunlab, show the Type 64’s ported barrel and baffles well.

type64silenced17
With the suppressor housing and baffle system removed. Note the series of holes in the barrel (GunLab)

The 1971 Small Arms Systems Lab report found that the audible report of the gun, was 150db at the rear of the receiver and 157db 12 feet down range, however, this is probably not the best indication of the Type 64’s capabilities as the report states that the gun was tested with Chinese Type 51 standard velocity 7.62x25mm ammunition. Ideally, the weapon would have been used with subsonic Type 64 ammo specially developed for China’s suppressed pistol-calibre weapons. Chinese sources reportedly put the weapons noise level at 84db when using subsonic ammunition. The US report did note that while its noise suppression wasn’t outstanding, it very effectively hid its muzzle flash.

type64silenced44a
The baffle system held together a pair of guide rods (GunLab)

It appears to have been primarily used by Chinese scouts and special forces and saw action during the 1979 Sino-Vietnamese War. In the late 80s the Chinese replaced the Type 64 with the suppressed version of the Type 85 submachine gun, also chambered in 7.62x25mm, which used the same magazines, the Type 85 had a tube metal and stamped receiver which was simpler to manufacture than the 64’s machined receiver. The Type 85 has subsequently been superseded by guns like the bullpup Type 05.

Special thanks to the collection that holds this weapon for allowing me to take a look at it. As always guys thank you for watching. If you enjoyed the video please share it with friends and help us


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Specifications:

Overall Length: 33.2in w/stock deployed
Barrel Length: 9.6in
Weight: 7.6 lbs
Action: Blowback, open bolt
Capacity: 20 or 30-round box magazines
Calibre: 7.62x25mm


Bibliography

Primary Sources:

‘Technical Notes: Chinese Communist 7.62mm Type 64, Silenced Submachine Gun’, US Army Weapons Command Research & Engineering Directorate Small Arms Systems Laboratory, J.J. Boccarossa, 27/09/1971

Secondary Sources:

Chinese Type 64 SMG, Small Arms Review, F. Iannamico (source)

Type 64 submachine gun (PR China), Modern Firearms, (source)

Chinese Type 64 suppressed SMG, ForgottenWeapons.com (source)

Call of Duty: WWII’s Sterling SMG

During a recent discussion over on the HF Twitter page, I was informed to my surprise that the Sterling submachine gun had been added as a DLC weapon to Call of Duty WW2. I thought it would be interesting to take a look at the model used in the game and see how historically accurate it is. I recently finished writing a book about the Sterling and have done some research into the theories of the Patchett prototypes seeing some action during the war.

The model that Sledgehammer Games, the developer, have used appears to be a mix of the early prototypes and the later production Sterlings. In terms of historical accuracy the gun should be correctly referred to as the Patchett Machine Carbine – after its designer George Patchett. It only began to be called the Sterling, after the company that manufactured it in the 1955.

COD Sterling
Developer’s model of the COD: WW2 Sterling SMG (courtesy of Activision/Sledgehammer Games)

The model appears to share some similarities with the original Patchett prototype, including the step in the welded together receiver – the result of using left over Lanchester machine carbine receiver tubes, which was also built by Sterling. The position of the stock hinge point also appears to be in the correct place (it was later moved forward when the stock was modified). However, it appears to be feeding from a much later curved commercial pattern Sterling magazine (you can tell by the zigzag outline on the rear of the magazine and of course the curve – although seemingly not quite as curved as the real thing.) In reality the Patchett prototypes fed from Sten magazines, it wasn’t until after the war that Patchett designed his excellent 34-round magazine.

Here’s a photo of the Patchett’s original tool room prototype that I took last year while researching:

Patchett prototype
Patchett’s Original Toolroom prototype (Matthew Moss)

Note how they even replicated the slanted brazed on rear sight that was added after the first trials. The game developers, however, added a metal guard tab just in front of the ejection port – something that wasn’t added until later and they also gave the gun markings on the magazine housing that mimic the later commercial Sterling markings.

The game model also has the Sterling’s helical grooves on its breech block, something the early prototypes did not have. It seems the developers mashed together the Patchett prototype with later production Sterling L2A3/Mk4s.

Did the Patchett See Action During WWII?

image1
A grainy photograph, sadly lacking provenance, that appears to show members of the Free French SAS with two Patchett prototypes during Operation Amherst, April 1945 (source)

While the early Patchett prototypes may have seen action in late 1944 – 1945 with one or two prototypes possibly making it into the hands of specialist troops there is no solid evidence to support this. There is a tantalising grainy photograph of what is believed to be members of the Free French SAS on operations in the Netherlands in April 1945 (during Operation Amherst). The photo above shows what appear to be two Patchetts during a meeting with local resistance members. There is also an uncorroborated story that one prototype was carried by Lt.Col. Robert Dawson, officer commanding No.4 Commando, during Operation Infatuate but there is no documentary evidence to support this. I discuss these and several other pieces of evidence that support the idea that the Patchett/Sterling saw action in my new book on the Sterling.

I have written a book for Osprey’s Weapon series looking at the development, use and significance of the Sterling, it’s available now, you can find out more about it here.

Shotgun Sight Sterling SMG Prototype

Before its adoption by the British Army in 1954 the Patchett Machine Carbine, later better known as the Sterling submachine gun, was extensively tested all over the world. The Patchett went through nearly a decade of testing, evaluation and refinement. It was tested by British troops around the world, from West Germany to Africa, from the middle east to Malaya.

Today, we’re going to examine a unique Patchett/Sterling prototype assembled in Malaya. The gun we’re examining is officially a MkII Patchett Machine Carbine, but as the guns are better known as the Sterling we will refer to it as such from here on out. This prototype has been specially adapted with a shotgun style rib sight to help aiming in jungle conditions.

DSC_0113
Right side profile of the jungle rib sight Patchett prototype (Matthew Moss)

It was in Malaya that the specially adapted but short-lived prototype improvement emerged. As early as December 1952, British troops were testing the gun during operations against communist insurgents in Malaya. The harsh jungle conditions were a challenge for any weapon but an early report testing a single prototype noted that the weapon performed well but one of the issues identified was that the rear aperture sight was found to be “smaller than was desirable” and the report suggested that the aperture be widened to 0.098 inches 2.5mm – the same as the Owen gun. The report also noted that the front sight “did not stand out well in relation to the front sight protectors”.

It seems that when a batch of 75 trials guns arrived in 1953, a number of them were specially adapted in theatre. It was hoped that the shotgun-style rib sight fitted along the length of the receiver would aid snap shooting in the jungle. It was intended to enable users to engage fleeting targets quicker and improve ‘first shot hit’ probability in thick jungle and heavy rainstorms.

96329
British troops patrolling the Malayan jungle, 1957 (National Army Museum)

During operations in Malaya and Borneo, many scouts and point men carried shotguns such as the semi-automatic Browning Auto-5. Shotguns were favoured during jungle operations because of the ease with which they could be quickly and instinctively aimed and their exceptional close-range firepower.

The modification saw the complete removal of the standard front and rear sights and the razing on of a rib sight running along the length of the top of the gun from the muzzle to the rear sight. It appears an armourer cut down and removed the front and rear sight assemblies and used them as mounting points. The first few inches of the rib are stippled to minimise glare and a brass front sight bead has been added to help sight acquisition.

DSC_0232
Left side profile of the jungle rib sight Patchett prototype (Matthew Moss)

The simpler sight rib also helped with another issue that was identified during early jungle testing, it removed the problem of the sights getting clogged with mud. It is unknown just how many were adapted but at least three are known to survive. The jungle-specific modifications were short-lived and not formerly adopted because the rib sight offered poor longer range accuracy.

Here are some more detail photographs of the rib sight prototype:

 

 

 

With the adoption of the Patchett as the L2A1, in 1954, a list of modifications based on trials recommendations was drawn up in June 1953, one of the suggestions was the enlargement of the rear sight aperture to 0.1, (2.5mm) 0.15 (3.8mm) or 0.2 inches (5mm). In August 1953, the infantry board decided that the 100 yard aperture would be 0.15 (3.8mm) in diameter while the 200 yard would be 0.1, (2.5mm). The spacing of the rear sight protectors was also subsequently widened to 0.55 inches (14mm). With these changes made the Sterling saw service in the jungles of Malaya and Borneo for over a decade during the Malayan Emergency and Indonesian Confrontation.

If you enjoyed the video and this article please consider supporting our work here.


Bibliography

Primary Sources:

‘Operational Research Section, Singapore, Technical Note No.5 – Technical Notes on Initial Trials of the Patchett Carbine in Malaya’, Maj. R.St.G. Maxwell, 1th December, 1952, Royal Armouries Library

‘Minutes of a Meeting held at the war office on Friday 7th August, 1953, to decide whether the Patchett sub-machine gun be introduced into the Service as a replacement for the Sten sub-mahcine gun’, Royal Armouries Library



I have written a book for Osprey’s Weapon series looking at the development, use and significance of the Sterling, it’s available now, you can find out more about it here.