Chinese Type 64 Suppressed Submachine Gun

The Type 64 is an integrally suppressed submachine gun designed in China in the early 1960s, taking several design elements from other Combloc small arms. The guns were manufactured at China’s State Factory 66 (with the factory’s ‘66’ in a triangle marking in the left side of the receiver).

right_h13_chinese_smg
Right side of the Type 64, with stock folded (Matthew Moss)

Designed concurrently with the Type 64 suppressed pistol during the 1960s, the Type 64 SMG was developed for Communist China’s special forces for use in clandestine operations. Chambered in the standard 7.62×25 ComBloc pistol round, the Type 64 functioned best with Type 64 subsonic ammunition, a special subsonic spitzer projectile variation of the standard 7.62mm pistol round. It did not chamber the low power 7.65x17mm round used by the Type 64/67 pistols.

DSC_0070
A close up of the weapon’s markings, including the State Factory 66 stamping (Matthew Moss)

The Type 64 fed from 20 or 30 round double stack magazines which were reportedly developed from or at least influenced by the Soviet PPS-43’s double stack, double feed magazines. The weapon used a conventional blowback action and fired from an open bolt. Its maximum effective range was approximately 200 metres with two position flip up sights ranging out at 100 and 200 metres.

The Type 64 had a milled receiver with lightening cuts and weighed in at 7.6lb or 3.5kg unloaded. It took its bolt from the Russian PPS-43 submachine gun and a trigger group inspired by the ZB vz.26 light machine gun’s, which was well liked by the Chinese military.

DSC_0071
The suppressor housing is unscrewed at the trunnion with an interrupted thread (Matthew Moss)

The Type 64 shared a number of external similarities with the standard Type 56 AK-clone including its pistol grip, safety lever and under-folding stock (which is similar but slightly different to the Type 56-I’s under-folding stock).

DSC_0067
The Type 64’s fire selector (Matthew Moss)

The weapon has a number different controls including a conventional AK-style safety-come-dust cover, on the right side of the receiver – which blocks the travel of the bolt.  On the opposite side of the receiver it has a two-position fire selector for semi and full-auto – you can just about reach these when the stock is folded. The forward position is for semi and the rearward position is full-auto. Finally, the 64 also has an additional trigger block safety, taken from the SKS, which pivots forward to prevent the trigger from being pulled.

DSC_0054
A close up of the magazine release, trigger block safety and lever safety (Matthew Moss)

According to a report written in October 1971, by the Small Arms Systems Lab of the US Army Weapons Command Research and Engineering Directorate, the weapon has an extremely high rate of fire of over 1,300 rpm.

A cyclic rate that high was the result of a combination of back pressure from the suppressor, the ammunition used and its blowback action. The Type 64’s chamber was fluted with three longitudinal cuts to aid extraction at its high rates of fire. It should be noted, however, that the 1971 US army tests were carried out with standard velocity ammunition – rather than the specialised subsonic Type 64.

DSC_0251aaa
The Type 64 with stock deployed, left & right profiles (Matthew Moss)

 

The top cover is removed by pushing in what at first appears to be a spring-loaded detent, but is actually the recoil spring guide rod. The front of the top cover is held in the receiver by a lip which fits into a slot just above the breech. The top cover itself is a thin piece of stamped sheet metal with the serial number stamped at the rear.

DSC_0090
With the receiver cover removed and the action cocked. The Type 64 fires from an open bolt. Note the buffer at the rear of the receiver (Matthew Moss)

With the top cover removed we can see inside the action. The 64 has a single recoil spring held in place by a guide rod. At the rear of the receiver is a small plastic buffer, designed to both soak up some of the recoil energy and to help reduce action cycling noise. There is an ejector on the left side of the receiver and guide rails along which the bolt moves. To remove the bolt it is pulled fully to the rear and then tilt it upwards.

DSC_0094
A close up of the bolt face (Matthew Moss)

The Type 64 is a pretty compact weapon despite the length of its suppressor. It has an under-folding stock, with two spring-loaded buttons at the rear of the receiver which have to be pushed in to fold and unfold the stock. When folded the weapon is 25in (or 63.5cm) long, with the stock adding 8 inches when it is deployed. The weapon can be used with the stock folded, although some of its controls are partially obscured.

The suppressor is contained by a housing which attaches to the receiver by an interrupted thread. The Type 64’s barrel was ported with 36, 3mm vents at the muzzle-end while the suppressor has 12 metal dished baffles held captive on a pair of guide rods. The weapon’s sights are mounted on the suppressor housing which attaches to the receiver by an interrupted thread. Sadly, I didn’t have time to strip the suppressor itself but the photos below, from my friend Chuck over at Gunlab, show the Type 64’s ported barrel and baffles well.

type64silenced17
With the suppressor housing and baffle system removed. Note the series of holes in the barrel (GunLab)

The 1971 Small Arms Systems Lab report found that the audible report of the gun, was 150db at the rear of the receiver and 157db 12 feet down range, however, this is probably not the best indication of the Type 64’s capabilities as the report states that the gun was tested with Chinese Type 51 standard velocity 7.62x25mm ammunition. Ideally, the weapon would have been used with subsonic Type 64 ammo specially developed for China’s suppressed pistol-calibre weapons. The US report did note that while its noise suppression wasn’t outstanding, it very effectively hid its muzzle flash.

type64silenced44a
The baffle system held together a pair of guide rods (GunLab)

It appears to have been primarily used by Chinese scouts and special forces and saw action during the 1979 Sino-Vietnamese War. In the late 80s the Chinese replaced the Type 64 with the suppressed version of the Type 85 submachine gun, also chambered in 7.62x25mm, which used the same magazines, the Type 85 had a tube metal and stamped receiver which was simpler to manufacture than the 64’s machined receiver. The Type 85 has subsequently been superseded by guns like the bullpup Type 05.

Special thanks to the collection that holds this weapon for allowing me to take a look at it. As always guys thank you for watching. If you enjoyed the video please share it with friends and help us


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.


Specifications:

Overall Length: 33.2in w/stock deployed
Barrel Length: 9.6in
Weight: 7.6 lbs
Action: Blowback, open bolt
Capacity: 20 or 30-round box magazines
Calibre: 7.62x25mm


Bibliography

Primary Sources:

‘Technical Notes: Chinese Communist 7.62mm Type 64, Silenced Submachine Gun’, US Army Weapons Command Research & Engineering Directorate Small Arms Systems Laboratory, J.J. Boccarossa, 27/09/1971

 Secondary Sources:

Chinese Type 64 SMG, Small Arms Review, F. Iannamico (source)

Type 64 submachine gun (PR China), Modern Firearms, (source)

Chinese Type 64 suppressed SMG, ForgottenWeapons.com (source)

The Galil ARM & its Inventor

Galil Development

The Galil rifle adopted by the Israeli Defence Force in 1972 was designed by Yisrael Galili and Ephraim Yaari of IMI following the disappointing performance of the FAL in service with the IDF since the early 1950’s. These failings of the FAL in service were mainly due to the poor reliability of the FAL with some of the mainly conscript troops in the field mainly down to poor maintenance and cleaning by the users in the field. The Israeli military found that captured AK47 rifles functioned more reliably without the routine maintenance that the FAL required, this was down to the finer tolerances and mechanism that the FAL employed whereas the AK47 could function reliably without the same level of cleaning and maintenance.

Yisrael Galil with Galil & Ephraim Yaari with Mini UZI
Yisrael Galili, ever the showman, demonstrating the his rifle (Vic Tuff)

In the late 1960’s the IDF carried out a series of trials to select a replacement for the FAL. As part of those trials the following small arms were tested:

  • M16A1
  • Stoner 63
  • Heckler & Koch HK33
  • AKM
  • Armalite AR18
  • and a pre-production rifle from Beretta that ultimately led to the AR70 series rifle.

The result was that the AKM rifle came out as the winner of the trials but with some reservations. The Israelis didn’t like the stamped receiver of the AKM and as part of the trials they tested the Finnish M62 AKM variant rifle which had a machined receiver built from a steel billet which made it much more robust but heavy. This became the basis of what was to become the Galil.

Galil Brochure b
Double page spread from a 1980s IMI Galil brochure (IMI)

A cold hammer forged barrel was selected together with a unitised front sight/gas block with a front sight base adjustable for elevation and drift adjustable for zeroing. The rear sight was positioned at the rear of the dust cover, which itself was strengthened to be more rigid than a standard AKM and allow the rear sight to maintain zero. The rear sight was an ‘L’ shaped flip type with positions for 300 & 500 meters. Flip up night sights were also fitted, they came with Tritium inserts. The folding stock was a virtual copy of the FN FAL Para type.

Galil Sporters

I won’t cover the Galil in any more detail as it has been covered by several others in great detail, what I will detail in future videos and articles is my own experiences of the semi-automatic ‘Sporter’ Galil rifles as well as the other IMI products that I have extensive knowledge of.

Yisrael Galil with UZI
Yisrael Galili demonstrating the UZI (Vic Tuff)

Meeting Yisreal Galili

Back in the early 1980’s IMI had been courted by several US companies to develop semiautomatic ‘clones’ of their military small arms. Action Arms worked with IMI and the UZI Carbine was developed primarily for US civilian sales by them from 1980. Following on from the UZI Carbine, semiautomatic versions of the Mini UZI and then the UZI Pistol were developed and sold.

Magnum Research Inc. as part of their partnership with IMI in developing the Desert Eagle pistol also marketed the semiautomatic versions of the Galil rifle in the USA.

Desert Eagle Pistol.png
An IMI promo photo for the Desert Eagle (IMI/Magnum Research)

In the UK at that time I was working part time as the armourer and technical advisor for the UK & Commonwealth distributor of IMI products Pat Walker Guns. I had worked with Pat since 1980 refurbishing and converting select fire and fully automatic ‘surplus’ small arms to semi-automatic only ‘civilian’ legal configuration for sale on the UK & Commonwealth collector/shooter market. This was a wonderful job as I got to travel a lot to see caches of surplus small arms and work on them… halcyon days!

Yisrael Galil & Ephraim Yaari with UZIs
Ephraim Yaari & Yisrael Galil with UZIs (Vic Tuff)

In or around 1983, Pat acquired the IMI agency for the UK, and as part of that agreement we had to be trained on IMI products so we could service and support them as the distributor. In October 1984, we flew to Tel Aviv in Israel to attend the first (and possibly only) armourers course on the entire family of IMI small arms! The UK team consisted of myself, as the technical part of the team, Pat Walker as the UK agent/distributor, and Colin Greenwood who was the editor of the very popular UK shooting magazine GUNS REVIEW who was attending the course so as to write an article for said magazine.

Once we arrived in Israel we were accommodated in the Plaza Hotel on the beachfront in Tel Aviv. That evening we were introduced to the other attendees on the course who came from the USA, Germany, Italy, the Netherlands, Switzerland, Finland, and a South American country… We were introduced to some of the IMI personnel, which included Yisrael Galili, and given a rundown of the schedule for the next week.

Sniper Galil
Promo image for the Galil Sniper, note the different position of the bipod (IMI)

During our time on the course we were given several ‘live fire’ demonstrations by none other than Yisrael Galili himself as well as Efrahiem Yaari (who would later go on to head up the special operations and weapons division of IMI as director in later years). We also got to handle and shoot all of the small arms IMI manufactured at that time including select fire versions and some prototype Desert Eagle pistols. In the evenings we were shown and also had to demonstrate how to strip, assemble, and troubleshoot all the IMI guns we had shot earlier that day… it became a source of entertainment that myself and the armourer of the Dutch distributor would see who could strip and reassemble each gun type the quickest… I won many a beer in those contests!

During one of the sessions where we were taught to strip the Galil, Yisrael Galili handed out some photocopies of a now infamous photo of the specially adapted Galil. He told us it was a special Galil for ‘mature’ IDF girls. Our friend Miles has a good article about the ‘Female Galil’ here.

Female IDF Soldier with Galil c
The infamous ‘Female Galil’, with specially adapted ergonomics to suit female members of the IDF. Note the added front pistol grip, specially profiled barrel and the short magazine (Yisrael Galili)

We were given guided tours of the IMI manufacturing facilities seeing how each model and each family of small arms were machined and assembled. We also got to visit the IMI ammunition plant and saw manufacture there as well as test firing the civilian brand of SAMSON ammunition they manufactured.

Samson loading
An 80s promo photo from the Samson factory (IMI)

It was with great pride that on the last evening we were in Israel we were each presented our armourers certificates and a commemorative book on the history of Israel by the Director of Sales Yehuda Amon at a presentation dinner in a restaurant in the ancient town of Caesarea. I also got to thank personally Mr Galili and Mr Yaarifor their excellent tuition and fantastic displays of weapons handling.

IMI Armourers Course
Myself, Pat Walker, Colin Greenwood Galili and the other participants and IMI staff from the 1984 IMI armourer’s course (Vic Tuff)

It was a fantastic opportunity for a then young man of 23 to get to work with such an influential smallarms company as IMI and get to meet such notable designers as Ysrael Galili and Ephraim Yaari. Sadly, the passage of time has robbed us of many of the people I shared that experience with Pat, Colin, and Mr Galili are sadly no longer with us. Luckily a few of those I met on the course are, and I still corresponded with them to this day.

Watch out for future articles and videos on my personal experiences with small arms.


Specifications for ARM (from 1983 factory brochure):

Overall Length (with stock extended): 38.5in / 98cm
Barrel Length: 18in / 46cm
Weight: 9.5lbs / 4.35kg
Action: Gas operated, rotating bolt
Capacity: 35 or 50-round box magazine
Calibre: 5.56x45mm


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

Heckler & Koch G41

In 1981, Heckler & Koch introduced what would be their last infantry rifle that used their tried and tested roller-delayed blowback action, the HK G41. In October 1980, following NATO’s smalls arms and ammunition testing during the late 1970s, a meeting of NATO Armament Directors, agreed to standardise to the 5.56x45mm round favoured by the United States since the mid-1960s. Standardisation Agreement (STANAG) 4172 saw NATO standardise on the Belgian/FN SS109 ball round. At the same time Draft STANAG 4179 proposed adopting US 30-round M16 magazines as the standard 5.56 magazine pattern, while this proposal wasn’t ratified the M16’s magazine became the de facto standard.

At this time Heckler & Koch were engaged in a major engineering project to develop the G11 caseless ammunition-firing individual weapon. Their main offering for the 5.56x45mm rifle market at the time was the HK33, a rechambered version of the 7.62x51mm G3 developed by Tilo Moller, which was introduced in 1965. The HK33, however, used a proprietary HK magazine and was not compatible with the M16’s magazines. In 1977, as the NATO trials began and it became clear that 5.56x45mm would be adopted, HK began to develop what would become the G41. In 1979 with initial development completed HK submitted 18 G41s for testing with the West German Army. It wasn’t until 1981 that HK introduced the G41 onto the market.

dsc_0862a
Left and right profile views of the G41 (Matthew Moss)

While continuing to use the same roller delayed blowback operating system as the G3, HK33 and MP5, the G41 embodied a number of improvements. While still using a stamped metal receiver it utilised 1mm thick high tensile steel rather than the 1.2mm thick steel used by the HK33. This helped to lighten the receiver. The new rifle also used a lighter bolt assembly, paired with a new recoil spring which comprised of five wound strands around a central coil, rather than a single coil, which had a longer stroke. This acted to lower the felt recoil. The G41, however, had a higher rate of fire at around 850 rounds per minute compared to the 750 rounds per minute of the HK33.  Some of the G41’s bolt geometries were reworked and a new extractor was added.

The G41’s lower receiver was redesigned to allow the rifle to feed from STANAG magazines rather than HK’s earlier proprietary magazines. The cocking lever and forward assist were taken from the HK21A1 (XM262) general purpose machine gun, developed for the US SAW trials.

dsc_0041a
HK G41 (top) and HK33 (bottom) field stripped (Matthew Moss)

It also had a new more triangular polymer foregrip and added a plastic dust cover to the ejection port, a NATO pattern optics mount (meeting STANAG 2324) replaced HK’s claw-mount system, and a spring-loaded folding carrying handle near the centre of balance was added. Importantly it also added a last round hold open device and a bolt release catch, on the left side of the lower receiver.

The usual thumb serrations on the side of the bolt, for pushing the bolt home, were replaced by a prominent forward assist, similar to that found on the M16A1 and other HK weapons such as the HK21 light machine gun and the PSG-1 sniper rifle. HK sales literature described it as a ‘low noise’ forward assist and the manual describes the “quiet cocking of the weapon” – essentially riding the cocking handle back into battery and then pushing the forward assist to lock the action, the system is not as ‘low noise’ as advertised.

dsc_0876
Right side of the G41, note the addition of a forward assist and dust cover (Matthew Moss)

Another important feature of the rifle was the inclusion of a three-round burst setting alongside semi and fully automatic. The G41 could mount a standard G3 bayonet, fit an M16 bipod and had a flash hider designed to enable it to fire NATO standard rifle grenades. The 40mm HK79 under barrel grenade launcher could also be mounted to all variants of the G41, simply swapping it out for the polymer forend. HK referred to this set up as the G41-TGS or ‘Tactical Group Support system’.

9
Spread from a 1985 HK promotional product brochure showing the various G41 configurations (HK)

The G41 came in a number of variants with designations A1 to A3. The base rifle had a fixed buttstock and its rifling had 1 turn in 7 inches with a right-hand twist, in a 18.9 inch barrel. The A1 had a 1 in 12” twist barrel and fixed buttstock. The A2 had a collapsing, single position stock and 1 in 7” inch twist rifling, while the A3 had 1 in 12” inch twist rifling. The 1 in 7” rifling was optimised for the new SS109, while the 1 in 12” optimised for the US M193 round. There was also a shortened G41K model which had a collapsing stock and a 15 inch barrel available with both rifling types.

One of the main issues with the G41 was its weight. Despite efforts to lighten the sheet metal receiver, it weighed more than its predecessor the HK33. According to measurement data compiled by researcher Nathaniel F, unloaded the G41 weighs in at 4.31kgs or 9.5 lbs, this is a full pound heavier than the HK33. A contemporary M16A2 weighed 3.39kg or 7.5 lbs while the Spanish CETME L, a similar stamped receiver rifle chambered in 5.56×45, weighed 3.72kg or 8.2 lbs. The rifle eventually adopted by the Bundeswehr, the HK G36, weighed 3.13kg or 7.3 lbs.  The G41K with its collapsing steel stock wasn’t much lighter, weighing 4.3kg or 9.5 lbs, according to HK sales literature. Another potential issue may have been reliability with the move to the STANAG magazine rather than the optimised proprietary HK magazines may have introduced some issues.

dsc_0040
The bolts of the HK G41 (top) and HK33 (bottom), note the redesigned extractor, forward assist serrations on the bolt carrier and the G41’s thicker but shorter recoil spring (Matthew Moss)

Following NATO’s decision the early 1980s saw a large number of countries looking to replace their ageing 7.62x51mm battle rifles. Sweden began to look for a 5.56x45mm rifle to replace its licensed version of the G3, the Ak4, in the late 1970s. HK could initially only offer the HK33 but the G41, tested later, was also rejected by the Swedes in favour of FN’s FNC. Italy sought to replace the BM59 with a more modern rifle and HK entered into an agreement with Luigi Franchi which saw them offer both the original HK configuration and the develop their own, slightly modified version, the Franchi mod. 641, but the Beretta AR70/90 was selected. Similarly, in 1984 Spain decided to adopt the indigenously developed CETME L. In 1986 the HK G41 was also submitted to the Irish Army’s trials to replace the FN FAL, it was beaten by the Steyr AUG. Initially West Germany had hoped to procure up to 20,000 HK G11 rifles per year, with a total of 224,000 in service by 2003.

dsc_0921
HK’s G11 and G41 (Matthew Moss)

The collapse of the Soviet Union and the subsequent reunification of Germany saw Federal budgets stretched and the G11 programme was subsequently abandoned entirely. The Bundeswehr still needed a suitable rifle to replace the G3 and in the 1990s sought a lighter weight rifle. HK felt their HK50 project, in development since the mid-1970s was a better bet than the heavier G41, and following Bundeswehr trials the G36 was subsequently adopted in 1997. Sadly, I have not been able to get a hold of any of the trials reports from the nations that tested the G41, so can not say with certainty why the countries mentioned above rejected HK’s rifle.

7
Graphic from HK’s manual for the G41 (HK)

From photographs of members of the Turkish Gendarmerie special operations group training at the Foça Commando School, dating from the early 2010s, it appears that Turkey either purchased a number of G41s or Turkey’s state-owned defence manufacturer, MKEK, produced an unknown number under license.At some point in the 1980s the British Army also tested a small number G41s with serial numbers #11131, #11832 and #11833 remaining in UK collections.

Denmark’s elite Jaegerkorpset and Froemandskorpset used the G41 for a time and Argentina’s special forces, including the Grupo de Operaciones Especiales, have also been photographed with both HK G41s and G41A2(collapsing stock) fitted with the TGS package comprising of the HK79 under barrel grenade launcher.

Argentine commandos with HK G41
Argentina’s Grupo de Operaciones Especiales on parade with G41s and the G41-TGS, grenade launcher package (source)

The G41 represents the last evolution of HK’s infantry rifles using the roller delayed blowback action. It comes from a period when HK were developing what they hoped would be the next generation of small arms technology and with the collapse of the G11 programme and the lack of interest in the G41 the company faced financial uncertainty throughout the early 1990s. HK’s move away from the roller delayed blowback action to a more conventional gas operated rotating bolt system, combined with lightweight polymers, in the G36 proved to be more successful than the ill-fated G41.

If you enjoyed the video and this article please consider supporting our work here.


Specifications (standard G41 rifle model):

Length: 39in (99cm)
Weight (unloaded): 4.31kgs or 9.5 lbs
Barrel Length (not including flash hider): 17.7in (45cm)
Action: Roller-delayed blowback
Calibre: 5.56x45mm
Feed: 30 round STANAG magazines
Cyclic Rate: ~850rpm


Bibliography:

The World’s Assault Rifles, G.P. Johnston & T.B. Nelson, (2016)

Die G11 Story, W. Story, (1993)

Full Circle: A Treatise on Roller Locking, R. Blake Stevens (2006)

The 5.56 Timeline, D. Watters, (source)

1985 HK Brochure on the G41 Series (via SAR Archive)

HK G41 Owner’s Manual (via SAR Archive)


Our thanks to the collection that holds this rifle for their kind permission to examine and film it. Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench, 2019.

Stripping the HK G11

Our thanks to the collection that holds the G11 for the privileged and nerve-wracking opportunity to field strip it and take a look inside. If you’d like to know more about the history of the G11’s development you can check out our video and full blog on it here. Vic has done a great series of videos looking at the G11 and the other prototype rifles from the US Army’s abortive Advanced Combat Rifle trials – you can find those here.


In this blog we’ll take a closer look at some of the G11’s components, for a demonstration of dissassembly and and explanation of how the rifle works in principal check out the video above.

Firstly, lets take a look at the exterior of the rifle. The weapon has a box-like polymer coated outer shell. The shell is made up of three parts, with the butt assembly and forend locking into the centre assembly which includes the pistol grip, trigger mechanism and optical sight. The forend and butt are locked into the centre assembly by plastic locking tabs. While stiff and somewhat difficult to depress the tabs are reportedly prone to breaking.

2
Left side view of the G11 (Matthew Moss)

Before we look at the G11’s internals lets take a look at the shell components. Here we can see the inside of the forend, we can see a metal (aluminium I believe) barrel tube into which the barrel slides.

DSC_0980
Close up of the the inside of the G11’s forend (Matthew Moss)

Below is a photograph of the rear of the centre assembly looking forward, the small white circle (sadly slightly out of focus) is the bushing the barrel protrudes through into the forend.

DSC_0999
The G11’s centre assembly houses a metal guide rail and magazine guide as well as the trigger mechanism (Matthew Moss)

Next we have a view of the inside of the rifle’s butt assembly. Note the scuff marks on the inside where the centre assembly has scrapped the plastic. We can also see the locking tab windows which are on the top and bottom of the butt.

DSC_0975
A view inside the G11’s butt stock (Matthew Moss)

Inside the butt we can see the ‘toothed wheel’ and ‘sealing gear’ which are turned when the cocking piece is rotated. These plastic pieces act directly on the action. Behind that is the gas escape valve, which will tap off excess gas if over pressure problems occur with the rifle.

DSC_0976
A close up of the sealing gear and toothed wheel that interface with the cocking handle (Matthew Moss)

The first step to disassembling the G11 is ensuring the weapon is clear by pushing the cleaning brush up into the breech.

DSC_0928
Close up of the G11’s cleaning brush, housed inside the pistol grip (Matthew Moss)

Lets now take a look at the rifle’s action up close, below we can see the G11 with its forend and butt assembly removed. Next to it is the breech cylinder and control disk.

DSC_0942
The G11 field stripped (Matthew Moss)

Here are some photos of the action from various angles:

DSC_0943
A view of the action from the rear. We can see the striker assembly, clamping plate, ejector lever and cylinder retaining catch (Matthew Moss)
DSC_0959
From the right side of the gun we can see the two gears which work the breech cylinder – the spur gear and the actuating gear (Matthew Moss)
DSC_0957
On the underside of the action we can see the rear of the clamping plate, the slide – which is slightly worn, and the sear projecting below it (Matthew Moss)

Here’s some close ups of the breech cylinder and control disk:

DSC_0931
The top of the control disk, which has to be removed before the breech cylinder can be (Matthew Moss)
DSC_0934
Underside of the control disk (Matthew Moss)
DSC_0936
Top view of the breech cylinder (Matthew Moss)
DSC_0937
A view of the square chamber which is a replaceable part which is held in the breech cylinder by a circular retaining spring – seen on the right (Matthew Moss)
DSC_0935
The base of the breech cylinder with notches where the actuating gear interfaces (Matthew Moss)

Here are some close ups of the various parts of the action:

DSC_0961
A close up of the rifle’s spur gear – which gives the G11 its almost clockwork appearance (Matthew Moss)
DSC_0954
Another close up of the underside of the action (Matthew Moss)
DSC_0950
Close up of the end of the barrel, with the square outline of the breech chamber visible – the G11’s caseless ammunition was rectangular but the projectile was round in diameter (Matthew Moss)
DSC_0962
Another shot of the rear of the action showing the striker / firing pin assembly and spring  (Matthew Moss)

According to the 1989 armourer’s manual, provided for the ACR trials, the G11 is made up of a total of nearly 450 individual parts. 144 of those make up the G11’s breech assembly.

With the breech and barrel assembly removed from the centre assembly here’s a diagram I put together showing most of the component parts of the G11’s action:

G11 Diagram Watermarked
G11 Breech & Barrel Assembly Diagram (Matthew Moss)

Next lets take a look at the G11’s barrel assembly with its recoil management system and gas piston:

DSC_0985
A bird’s eye view of the G11’s breech and barrel assembly, note the barrel markings (Matthew Moss)
DSC_0983
A side view of the breech with the cylinder and control disk in position (Matthew Moss)
DSC_0981
A view of the housing of the recoil mitigation system, on the other side is the gas piston system (Matthew Moss)

Finally, here’s a photo of the G11 broken down into its major component assemblies: magazine, forend, centre assembly breech & barrel assembly and butt stock:

DSC_0997
G11 field stripped (Matthew Moss)

If you enjoyed the video and this article please consider supporting our work here.


Bibliography

HK G11- ACR. Armourer’s Manual for Maintenance of Repair of Rifle, 4.92mm, ACR, March 1989 (source)

‘Rifle, 4.92mm, ACR’ Operator’s Manual (source)


Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench, 2018.

The Curtis Rifle – The First Repeating Bullpup

Today we’re examining an intriguing firearm with a fascinating history. It is difficult to understate the potential importance of the Curtis Rifle. Despite being designed in Britain in the 1860s the firearm gained more notoriety when it was offered as evidence in a legal battle between the Winchester Repeating Arms company and Francis Bannerman. What makes the firearm most noteworthy, however, is its fundamentally unconventional layout. Designed by William Joseph Curtis in the mid-1860s, it is arguably one of the earliest ‘bullpups’ and almost certainly the first repeating bullpup.

Curtis bullpup full length
William Curtis’ 1866 ‘bullpup’ rifle, built in 1895 by Winchester (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

For the purpose of this article it would be wise to first define what a bullpup actually is. It can be defined as a weapon with a somewhat unconventional layout which places the action and magazine behind the weapon’s trigger group. This has the benefit of maintaining a conventional rifle’s barrel length while making the overall length of the rifle more compact.

Bullpup rifles became popular with a number of militaries around the world during the 1970s and 1980s – namely the Austrian Steyr AUG, the French FAMAS and the British SA80, and more recently with rifles from China and Singapore as well as the Tavor series of rifles from Israel.

US827893-0
Thorneycroft, Farquhar and Hill’s 1905 carbine patent (source)

The bullpup, however, dates back much further with some argument to be made for the first firearms to utilise the concept being 19th century percussion target shooting rifles. The earliest military bullpups date to the beginning of the 20thth century, these include a rifles designed by Samuel McClean, the initial designer of the Lewis Gun, patented in 1896 (US #723706), by Major Philip Godsal (US #808282) and a carbine developed by James Baird Thorneycroft in 1901. Thorneycroft subsequently worked with Moubray Gore Farquhar and Arthur Henry Hill to patent a refined version of the carbine in 1905 (US #827893). While the Thorneycroft was tested by the British army it was rejected due to ergonomic and reliability shortcomings.

Faucon bullpup
Faucon’s 1911 ‘Fusil Équilibré’ patent (source)

In 1908 Lieutenant-Colonel Armand-Frédéric Faucon of the Troupes Coloniales (French Colonial Infantry) began developing what he termed a ‘Fusil Équilibré’ or balanced rifle. Faucon patented his concept in France in 1911 (FR #422154) and continued to work on the balanced rifle during World War One, utilising a Meunier A5 semi-automatic rifle in working prototypes. The Faucon-Meunier rifle was tested in 1918 and 1920 but eventually rejected. It would be nearly 45 yeas before the bullpup concept was revisited by a major power. Engineers working at the Royal Small Arms Factory at Enfield and at the British Armament Design Department in the 1940s began to develop designs based around the bullpup concept. (Some of these will hopefully be the focus of future videos!)

William Curtis’ design, however, predates all of these. Patented in Britain on 10th July, 1866, Curtis is listed by the London Gazette as a Civil Engineer. His design is unlike anything that had been seen before. Based on a slide-action with a drum magazine, it was placed over the shoulder – much like a modern shoulder-fired anti-tank weapon.

Curtis patent abridgement
William Joseph Curtis’ July 1866 patent for ‘Breech actions, sliding breech-block & stocks’ (courtesy of Research Press)

Curtis’ rifle is probably the very first bullpup magazine rifle, one of the earliest to have a drum magazine (an Italian, Marco Antonio Francois Mennons, patented an earlier design for a drum magazine in March 1862, GB #637) and also an early striker-fired design. Clearly a design well ahead of its time and radically unconventional.

This unconventional gun’s designer was born in Islington, London in 1802, as a civil engineer he worked on Britain’s rapidly growing railway network. He died in 1875, placing the development of his rifle nearer the end of his life.  With hindsight Curtis’ design clearly had revolutionary potential but it appears that his concept was never taken up. It appears that he only patented his design in the United Kingdom. If not for a corporate lawsuit on another continent, decades later, then it is possible Curtis’ design, like so many others, would have slipped into historical obscurity.

Francis Bannerman
Francis Bannerman, (source)

Francis Bannerman vs. the Winchester Repeating Arms Company

In 1890, Francis Bannerman VI, a successful entrepreneur specialising in junk, scrap and later surplus, purchased the Spencer Arms Company and the rights to their patents. The company had been founded by Christopher Miner Spencer, designer of the Spencer Rifle, they produced the first commercially successful slide or pump-action shotgun. This pump action shotgun was designed by Spencer and Sylvester H. Roper and patented in April, 1882 (US #255894). Bannerman continued producing the shotgun as the Bannerman Model 1890, however, in 1893 the Winchester Repeating Arms Company, introduced the John Browning-designed Model 1893 pump shotgun (US #441,390).

Spencer Roper patnet
Spencer & Roper’s 1882 patent for their pump action shotgun (source)

In response in October 1894, Bannerman filed a law suit against the Winchester Repeating Arms Company claiming that the slide/pump actions used by Winchester’s Model 1890 and new Model 1893 shotgun infringed on the patents that he owned.

He called for the court to force Winchester to halt production and claimed $10,000 in damages and royalties for the sale of guns which he believed infringed his patent. Winchester temporarily halted production of the Model 1893, in the meantime Bannerman continued producing and improving his shotgun introducing the 1894 and 1896 models.

Times report on bannerman suit
News report on the ruling of the Bannerman vs Winchester case from The Times (Philadelphia), 27th June, 1897

Various contemporary newspaper reports suggest between 100,000 and 500,000 people were directly interested in the case as ordinary owners were liable under the conditions of Bannerman’s suit.

Winchester dispatched George D. Seymour to Europe to scour the French and British patent archives for any patents for similar actions that had been filed there before those now owned by Bannerman. Winchester discovered four patents: three British and one French. The earliest of these was Alexander Bain’s patent of 1854. Two more patents held by Joseph Curtis and William Krutzsch were found, dating from 1866. The later French patent was filed by M.M. Magot in 1880. All of these designs, including the Curtis we are examining here, never progressed beyond the development stage and were largely forgotten until rediscovered by Winchester.

Krutzsch's pump action rifle
Model of William Krutzsch’s pump action rifle (Photo by Nathaniel F, courtesy of Cody Firearms Museum)

Winchester claimed that these earlier designs invalidated Bannerman’s patent claims. To illustrate their defence Winchester decided to build working models of each of the designs, breathing life into long forgotten patent drawings. This must have been a major engineering task as the patent designs would not have had all the information needed to produce a working model.

In 1895-96 Winchester engineers, including T.C. Johnson, assembled working models of each of the designs to prove their viability. These were tested and Winchester’s lawyers took them into court and submitted them as evidence, even offering a firing demonstration. The court declined the demonstration and made its decision on June 27th 1897. Judge Hoyt H. Wheeler of the United States District Court for the Southern District of New York ruled in favour of Winchester and threw out Bannerman’s suit.

Winchester had produced some 34,000 Model 1893s before, in November 1897, they introduced the improved Model 1897 which proved to be hugely popular on both the civilian and military markets. Bannerman unveiled a final shotgun, the Model 1900, but production ended in the early 1900s.

Curtis’ Unconventional Design

Curtis Rifle right side
Right side, rear quarter, view of the Winchester-made Curtis Rifle (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

Curtis’ design encapsulates a number of features which, in 1866, were unheard of and arguably revolutionary. Not only is it probably the first magazine-fed repeating bullpup but it also uses a drum magazine, something that would not see substantial military use until the First World War. It has a folding shoulder support or stock, uses a striker fired action and makes use of self-contained ammunition.

 

 

 

 

This slideshow requires JavaScript.

The Curtis’ rifle is placed over the top of the user’s shoulder with a folding leather strap which fits into the shoulder pocket. Curtis’ original patent also suggests a fixed hook and strap. The user then grasps the loop near the muzzle with their support hand and the trigger and bolt handle with their other hand. Novel, but not the most ergonomic of designs.

sketch of curtis rifle
Illustration of how the Curtis Rifle was ‘shouldered’ (Courtesy of the Cody Firearms Museum)

The magazine appears to hold at least 13 or more rounds according to the available patent and Winchester’s engineering drawings. The magazine is fixed in place and rounds appear to have been fed into it through the loading/ejection port on the left side of the weapon. This would have also put spent cases being ejected right next to the user’s neck. Curtis’ patent explains that the magazine has a spring inside which has a length of string attached to the top of it which the user can pull back to depress it and allow cartridges to be loaded into the drum. The magazine has a single stack or loop of cartridges. Once loaded the string can be released, allowing the magazine spring to push rounds into the action.

Curtis trigger and bolt
Close up of the left side of the Curtis’ trigger, bolt assembly and hand loop (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

The Curtis rifle’s action appears to lock at the front of the weapon with the bolt handle acting on a hinged, spring-loaded, locking piece or flapper which dropped into place when locked. To unlock the action the bolt handle was sharply pulled to the rear which pushed the locking piece out of engagement and unlocked the action allowing the operating rod to be cycled.

Winchester Curits drawing
Winchester engineering drawing drawn up c.1895 of the Curtis (courtesy of the Cody Firearms Museum)

The weapon’s chamber appears to be just forward of the centre of the drum magazine with the striker assembly located behind it. To operate Curtis’ rifle the magazine was loaded and then the user had to unlock the action by pulling the bolt handle backwards. This then allowed the operating rod to be pulled backwards, like a pump action, which pushed the bolt and striker assembly to the rear, cocking the striker, the bolt handle was then returned forward and locked back into position. This chambered a round ready to be fired.

Curtis drum mag
Close up of the Curtis’ brass drum magazine and loading/ejection port (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

The trigger at the front of the firearm is connected to the striker assembly by a long length of wire. When pulled the wire becomes taught and trips a sear to release the striker, firing the weapon.

Originally Curtis’ patent describes how ‘small punches’ on the bolt face would pierce the cartridge base during firing to enable the spent case to be extracted once the action was cycled. From Winchester’s engineering drawings, however, it appears they replaced this with a more reliable and conventional extractor at the 7 o’clock position of the bolt face.

Given that the weapon would have fired black powder cartridges it is unclear how well the rifle would have faired with sustained firing. The drum magazine would have been susceptible to jamming as a result of powder fouling. This, however, would not have been an issue for Winchester later version of the rifle.

detail from curtis patent
Detail of Fig.1 & Fig.10 from Curtis’ 1866 patent (courtesy of Research Press)

But the Curtis has one more interesting surprise. The original 1866 patent also includes what might be one of the earliest descriptions of a gas operated firearm. One of the most fascinating sections of Curtis’ original patent details how the rifle might have been adapted for gas operation:

“An arrangement is shown in Fig.10, in which the rod G is dispensed with; in this case the barrel may be shorter, not projecting beyond the shoulder; the butt is similar. The breech may be opened automatically by the powder gases, which pass by an opening in the barrel to a cylinder with which works a breech operating plunger.”

Curtis does not go into further detail but he is clearly describing a piston-driven, gas operated system. The patent drawing also depicts an alternative tube magazine instead of the drum magazine.

It is unknown if Curtis ever put his theory to the test and developed his gas system idea further. It is tempting to wonder if, in 1895 when Winchester were assembling their model of the Curtis, if John Browning or William Mason, who were also developing their own gas operated systems at the time, were aware of Curtis’ idea from 30 years earlier. As such Curtis’, admittedly vague, gas system pre-dates the first patents on gas operation by just under 20 years.

If you enjoyed the video and this article please consider supporting our work here.


Specifications:

Action: Slide action
Calibre: .32 Winchester Centre Fire
Feed: ~12 round drum magazine


My thanks to the Cody Firearms Museum at the Buffalo Bill Center of the West for allowing me to examine and film the Curtis. Special thanks to the CFM’s assistant curator Danny Michael for making extra time to open up the case where the rifle Curtis is on display so we could examine it and for also sharing Winchester’s technical drawings and other records.

Thanks also to David Minshall of Research Press.co.uk for his assistance finding Curtis’ original British patent abridgement and to John Walter for digging up some additional information about Curtis’ life.


Bibliography:

‘Winchester Suit Decided’, The Times (Philadelphia), 27th June, 1897

‘Recollections of the Forming of the Pugsley & Winchester Gun Collections: A Talk Given by Mr. Edwin Pugsley at the New Haven Meeting of the AS of AC’, September, 1955.

Curtis Rifle, Cody Firearms Museum, online catalogue entry (source)

‘Francis Bannerman VI, Military Goods Dealer to the World’, American Society of Arms Collectors Bulletin 82:43-50, D.B. Demeritt, Jr., (1982)

Patents:

Improvements in fire-arms’ A. Bain, British Patent #1404, 26th June, 1854

‘Breech actions, sliding breech block; stocks’, W.J. Curtis, British Patent #1810, 10th July, 1866

‘Breech actions, hinged and laterally-moving breech block; magazines’, W. Krutzsch, British Patent #2205, 27th August, 1866

‘Magazine Fire Arm’, Spencer & Roper, US Patent #255894, 4th April, 1882

‘Magazine Bolt Gun’, S. McClean, US Patent #723706, 28th May, 1896

‘Breech-loading small-arm’, P.T. Godsal, US Patent #808282, 19th June, 1903

‘Breech Loading Small Arm’, Thorneycroft, Farquhar & Hill, US Patent #827893, 4th August, 1905

‘Fusil équilibré’, A.B. Faucon, French Patent #422154, 15th March, 1911

 

 

BESAL Light Machine Gun

By the Autumn of 1940, Nazi Germany controlled most of mainland Europe, France had surrendered, and the British Army had been forced to evacuate the continent and in the process had lost much of its arms and equipment.

Arms production in Britain was ramped up in order to arm the returning troops and the new units being formed to defend against the imminently expected German invasion. Existing designs like the Bren light machine gun and the Lee-Enfield Rifle were simplified to increase production however new options were also examined. The cheap, quickly manufactured STEN submachine gun was introduced and calls were made for a simplified light machine gun which could be made in any machine or workshop with simple tooling. Even before the fall of France the British Ordnance Board sent out a memo in June 1940, requesting a light machine gun which could be produced in garages and smaller workshops throughout Britain in the event that the Royal Small Arms Factory at Enfield was bombed.

In December 1940, the Chief Superintendent of Design outlined a light machine gun based on the Lewis Gun’s rotating bolt, which fed from Bren gun magazines.

The Birmingham Small Arms company (BSA) were approached to develop a design. BSA tasked their chief designer, Henry Faulkner, with the project. Members of the British Army’s Ordnance Board, however, began to question the decision to have an established manufacturer build a prototype for a gun that was supposed to be assembled in small ad-hoc workshops. As a result the contract was cancelled, however, BSA and Faulkner persisted anyway.

Faulkner, with the help of Roger Wackrow, came up with a weapon which later became known as the BESAL. The design was developed to be simple, cheap and quick to manufacture. The standards of finish were significantly lower than those of the standard Bren then in production. The plan was to issue the BESAL in the event Britain’s armed forces found themselves engaged in a last ditch defence with German invasion either imminent or already underway.

Faulkner’s design was chambered in .303 and fed feeding from standard Bren gun curved box magazines. It used a basic trigger mechanism, a simple pressed gas cylinder and a body held together by pinning and spot welding. The first prototype had a folding but non-adjustable bipod and a skeleton butt stock with a wooden insert. With the manufacture of barrels expected to be a bottleneck to the weapon’s production it was suggested that the spare barrel issued with each Bren gun be recalled for use in the new BESAL. This clearly illustrates just how desperate the situation was expected to be. The first prototype BESAL was ready by late 1941, and testing began in March 1942. The BESAL proved to be reliable and effective during trials.

Faulkner’s design went through a number of iterations but the gneral design had been finalised by May 1942 when BSA, Faulkner and Wackrow filed three patents protecting the design. The principle feature of the later BESAL patterns was the use of a cocking system which saw the operator push the pistol grip forward to catch the bolt, and then pull it to the rear to cock the weapon. This is a system that was later seen in the Czechoslovakian Vz 52/57, 59 series and the Finnish KVKK-62 general purpose machine gun.

Iterations of the BESAL:

1st Pattern: 

Besal 2 001

(Artists impression of 1st BESAL prototype – from Dugelby’s Bren Gun Saga)

  • Right side cocking handle
  • Skeleton butt
  • Simple fixed peep sight
  • Non-adjustable bipod mounted on the receiver

2nd Pattern:

Besal 3 001

(Photograph of a 2nd Pattern BESAL with a pan magazine, note the right-side cocking handlefrom Dugelby’s Bren Gun Saga)

  • Bipod moved to front of the gas tube
  • Universal magazine adaptor fitted for Bren and Motley Pan magazines
  • Full wooden stock – similar in profile to the Lewis Gun’s
  • 2-position sight
  • Disassembly knob introduced

3rd Pattern:

DSC_0828

(Our photograph of a 3rd Pattern BESAL)

  • Pistol grip cocking mechanism replacing the conventional cocking handle

4th Pattern:

Besal 4 001

(Photograph of a 4th Pattern BESAL, note the selector on the pistol grip – from Dugelby’s Bren Gun Saga)

  • Introduction of a selector switch on the left side of the weapon’s pistol grip

In August 1942, BSA submitted the 3rd Pattern Prototype for trials. It was extensively tested between September and November 1942. On 6th January, 1943, BSA renamed the BESAL the ‘Light Machine Gun, Faulkner, 0.303-In Mk1’ in order to prevent confusion with the 7.92x57mm BESA machine gun used in some British tanks. The BESA, also produced by BSA, used a similar pistol grip cocking mechanism. We hypothesise that the the BESAL’s name might come from the BESA, meaning BESA-Light. This, however, is unconfirmed.

It seems that over time as BSA and Faulkner improved and refined the design the BESAL ceased to be a cheap, simple, quickly-made alternative to the Bren. Instead it appears that BSA hoped the weapon might be adopted as a somewhat cheaper substitute standard to the Bren. Final testing of the BESAL were held in March 1943, but by now the weapon’s original purpose had been made defunct by the huge increase in Bren manufacturing capacity. By 1943 the Bren was in production on four continents: at Enfield in the UK, at John Inglis in Canada, at Ishapore in India and Lithgow in Australia. Inglis alone was producing 10,000 Brens a month by 1943.

With the need for a new light machine gun gone the BESAL project was cancelled in June 1943. BSA produced an estimated 20 guns, of various patterns, during the BESAL development project. Today, it is believed that only a handful remain.

If you enjoyed the video and this article please consider supporting our work here.


Technical Specifications:

Length: 118.5cm (46.6in)
Weight: 9.7kg (21lb 8oz)
Barrel Length: 56cm (22in)
Action: Gas operated, short recoil
Calibre: .303
Feed: 30-round Bren box magazine or 100-round Motley pan magazine
Cyclic Rate: 600rpm


Bibliography:

The Bren Gun Saga, T. B. Dugelby (1999)
Bren Gun, N. Grant, (2013)
Military Small Arms, I. Hogg & J. Weeks (1985)
Modern Small Arms, F. Myatt (1979)

Patents: 

‘Improvements in or relating to gas-operated automatic firearms’, GB572925, BSA, H. A. Faulkner & R.D. Wackrow, 30/10/1945, (source)

‘Improvements in or relating to automatic firearms’, GB572926, BSA, H. A. Faulkner & R.D. Wackrow, 30/10/1945, (source)

‘Improvements in or relating to automatic firearms’, GB572924, BSA, H. A. Faulkner & R.D. Wackrow, 30/10/1945, (source)