The Curtis Rifle – The First Repeating Bullpup

Today we’re examining an intriguing firearm with a fascinating history. It is difficult to understate the potential importance of the Curtis Rifle. Despite being designed in Britain in the 1860s the firearm gained more notoriety when it was offered as evidence in a legal battle between the Winchester Repeating Arms company and Francis Bannerman. What makes the firearm most noteworthy, however, is its fundamentally unconventional layout. Designed by William Joseph Curtis in the mid-1860s, it is arguably one of the earliest ‘bullpups’ and almost certainly the first repeating bullpup.

Curtis bullpup full length
William Curtis’ 1866 ‘bullpup’ rifle, built in 1895 by Winchester (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

For the purpose of this article it would be wise to first define what a bullpup actually is. It can be defined as a weapon with a somewhat unconventional layout which places the action and magazine behind the weapon’s trigger group. This has the benefit of maintaining a conventional rifle’s barrel length while making the overall length of the rifle more compact.

Bullpup rifles became popular with a number of militaries around the world during the 1970s and 1980s – namely the Austrian Steyr AUG, the French FAMAS and the British SA80, and more recently with rifles from China and Singapore as well as the Tavor series of rifles from Israel.

US827893-0
Thorneycroft, Farquhar and Hill’s 1905 carbine patent (source)

The bullpup, however, dates back much further with some argument to be made for the first firearms to utilise the concept being 19th century percussion target shooting rifles. The earliest military bullpups date to the beginning of the 20thth century, these include a rifles designed by Samuel McClean, the initial designer of the Lewis Gun, patented in 1896 (US #723706), by Major Philip Godsal (US #808282) and a carbine developed by James Baird Thorneycroft in 1901. Thorneycroft subsequently worked with Moubray Gore Farquhar and Arthur Henry Hill to patent a refined version of the carbine in 1905 (US #827893). While the Thorneycroft was tested by the British army it was rejected due to ergonomic and reliability shortcomings.

Faucon bullpup
Faucon’s 1911 ‘Fusil Équilibré’ patent (source)

In 1908 Lieutenant-Colonel Armand-Frédéric Faucon of the Troupes Coloniales (French Colonial Infantry) began developing what he termed a ‘Fusil Équilibré’ or balanced rifle. Faucon patented his concept in France in 1911 (FR #422154) and continued to work on the balanced rifle during World War One, utilising a Meunier A5 semi-automatic rifle in working prototypes. The Faucon-Meunier rifle was tested in 1918 and 1920 but eventually rejected. It would be nearly 45 yeas before the bullpup concept was revisited by a major power. Engineers working at the Royal Small Arms Factory at Enfield and at the British Armament Design Department in the 1940s began to develop designs based around the bullpup concept. (Some of these will hopefully be the focus of future videos!)

William Curtis’ design, however, predates all of these. Patented in Britain on 10th July, 1866, Curtis is listed by the London Gazette as a Civil Engineer. His design is unlike anything that had been seen before. Based on a slide-action with a drum magazine, it was placed over the shoulder – much like a modern shoulder-fired anti-tank weapon.

Curtis patent abridgement
William Joseph Curtis’ July 1866 patent for ‘Breech actions, sliding breech-block & stocks’ (courtesy of Research Press)

Curtis’ rifle is probably the very first bullpup magazine rifle, one of the earliest to have a drum magazine (an Italian, Marco Antonio Francois Mennons, patented an earlier design for a drum magazine in March 1862, GB #637) and also an early striker-fired design. Clearly a design well ahead of its time and radically unconventional.

This unconventional gun’s designer was born in Islington, London in 1802, as a civil engineer he worked on Britain’s rapidly growing railway network. He died in 1875, placing the development of his rifle nearer the end of his life.  With hindsight Curtis’ design clearly had revolutionary potential but it appears that his concept was never taken up. It appears that he only patented his design in the United Kingdom. If not for a corporate lawsuit on another continent, decades later, then it is possible Curtis’ design, like so many others, would have slipped into historical obscurity.

Francis Bannerman
Francis Bannerman, (source)

Francis Bannerman vs. the Winchester Repeating Arms Company

In 1890, Francis Bannerman VI, a successful entrepreneur specialising in junk, scrap and later surplus, purchased the Spencer Arms Company and the rights to their patents. The company had been founded by Christopher Miner Spencer, designer of the Spencer Rifle, they produced the first commercially successful slide or pump-action shotgun. This pump action shotgun was designed by Spencer and Sylvester H. Roper and patented in April, 1882 (US #255894). Bannerman continued producing the shotgun as the Bannerman Model 1890, however, in 1893 the Winchester Repeating Arms Company, introduced the John Browning-designed Model 1893 pump shotgun (US #441,390).

Spencer Roper patnet
Spencer & Roper’s 1882 patent for their pump action shotgun (source)

In response in October 1894, Bannerman filed a law suit against the Winchester Repeating Arms Company claiming that the slide/pump actions used by Winchester’s Model 1890 and new Model 1893 shotgun infringed on the patents that he owned.

He called for the court to force Winchester to halt production and claimed $10,000 in damages and royalties for the sale of guns which he believed infringed his patent. Winchester temporarily halted production of the Model 1893, in the meantime Bannerman continued producing and improving his shotgun introducing the 1894 and 1896 models.

Times report on bannerman suit
News report on the ruling of the Bannerman vs Winchester case from The Times (Philadelphia), 27th June, 1897

Various contemporary newspaper reports suggest between 100,000 and 500,000 people were directly interested in the case as ordinary owners were liable under the conditions of Bannerman’s suit.

Winchester dispatched George D. Seymour to Europe to scour the French and British patent archives for any patents for similar actions that had been filed there before those now owned by Bannerman. Winchester discovered four patents: three British and one French. The earliest of these was Alexander Bain’s patent of 1854. Two more patents held by Joseph Curtis and William Krutzsch were found, dating from 1866. The later French patent was filed by M.M. Magot in 1880. All of these designs, including the Curtis we are examining here, never progressed beyond the development stage and were largely forgotten until rediscovered by Winchester.

Krutzsch's pump action rifle
Model of William Krutzsch’s pump action rifle (Photo by Nathaniel F, courtesy of Cody Firearms Museum)

Winchester claimed that these earlier designs invalidated Bannerman’s patent claims. To illustrate their defence Winchester decided to build working models of each of the designs, breathing life into long forgotten patent drawings. This must have been a major engineering task as the patent designs would not have had all the information needed to produce a working model.

In 1895-96 Winchester engineers, including T.C. Johnson, assembled working models of each of the designs to prove their viability. These were tested and Winchester’s lawyers took them into court and submitted them as evidence, even offering a firing demonstration. The court declined the demonstration and made its decision on June 27th 1897. Judge Hoyt H. Wheeler of the United States District Court for the Southern District of New York ruled in favour of Winchester and threw out Bannerman’s suit.

Winchester had produced some 34,000 Model 1893s before, in November 1897, they introduced the improved Model 1897 which proved to be hugely popular on both the civilian and military markets. Bannerman unveiled a final shotgun, the Model 1900, but production ended in the early 1900s.

Curtis’ Unconventional Design

Curtis Rifle right side
Right side, rear quarter, view of the Winchester-made Curtis Rifle (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

Curtis’ design encapsulates a number of features which, in 1866, were unheard of and arguably revolutionary. Not only is it probably the first magazine-fed repeating bullpup but it also uses a drum magazine, something that would not see substantial military use until the First World War. It has a folding shoulder support or stock, uses a striker fired action and makes use of self-contained ammunition.

 

This slideshow requires JavaScript.

The Curtis’ rifle is placed over the top of the user’s shoulder with a folding leather strap which fits into the shoulder pocket. Curtis’ original patent also suggests a fixed hook and strap. The user then grasps the loop near the muzzle with their support hand and the trigger and bolt handle with their other hand. Novel, but not the most ergonomic of designs.

sketch of curtis rifle
Illustration of how the Curtis Rifle was ‘shouldered’ (Courtesy of the Cody Firearms Museum)

The magazine appears to hold at least 13 or more rounds according to the available patent and Winchester’s engineering drawings. The magazine is fixed in place and rounds appear to have been fed into it through the loading/ejection port on the left side of the weapon. This would have also put spent cases being ejected right next to the user’s neck. Curtis’ patent explains that the magazine has a spring inside which has a length of string attached to the top of it which the user can pull back to depress it and allow cartridges to be loaded into the drum. The magazine has a single stack or loop of cartridges. Once loaded the string can be released, allowing the magazine spring to push rounds into the action.

Curtis trigger and bolt
Close up of the left side of the Curtis’ trigger, bolt assembly and hand loop (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

The Curtis rifle’s action appears to lock at the front of the weapon with the bolt handle acting on a hinged, spring-loaded, locking piece or flapper which dropped into place when locked. To unlock the action the bolt handle was sharply pulled to the rear which pushed the locking piece out of engagement and unlocked the action allowing the operating rod to be cycled.

Winchester Curits drawing
Winchester engineering drawing drawn up c.1895 of the Curtis (courtesy of the Cody Firearms Museum)

The weapon’s chamber appears to be just forward of the centre of the drum magazine with the striker assembly located behind it. To operate Curtis’ rifle the magazine was loaded and then the user had to unlock the action by pulling the bolt handle backwards. This then allowed the operating rod to be pulled backwards, like a pump action, which pushed the bolt and striker assembly to the rear, cocking the striker, the bolt handle was then returned forward and locked back into position. This chambered a round ready to be fired.

Curtis drum mag
Close up of the Curtis’ brass drum magazine and loading/ejection port (Photo by Matthew Moss, courtesy of the Cody Firearms Museum)

The trigger at the front of the firearm is connected to the striker assembly by a long length of wire. When pulled the wire becomes taught and trips a sear to release the striker, firing the weapon.

Originally Curtis’ patent describes how ‘small punches’ on the bolt face would pierce the cartridge base during firing to enable the spent case to be extracted once the action was cycled. From Winchester’s engineering drawings, however, it appears they replaced this with a more reliable and conventional extractor at the 7 o’clock position of the bolt face.

Given that the weapon would have fired black powder cartridges it is unclear how well the rifle would have faired with sustained firing. The drum magazine would have been susceptible to jamming as a result of powder fouling. This, however, would not have been an issue for Winchester later version of the rifle.

detail from curtis patent
Detail of Fig.1 & Fig.10 from Curtis’ 1866 patent (courtesy of Research Press)

But the Curtis has one more interesting surprise. The original 1866 patent also includes what might be one of the earliest descriptions of a gas operated firearm. One of the most fascinating sections of Curtis’ original patent details how the rifle might have been adapted for gas operation:

“An arrangement is shown in Fig.10, in which the rod G is dispensed with; in this case the barrel may be shorter, not projecting beyond the shoulder; the butt is similar. The breech may be opened automatically by the powder gases, which pass by an opening in the barrel to a cylinder with which works a breech operating plunger.”

Curtis does not go into further detail but he is clearly describing a piston-driven, gas operated system. The patent drawing also depicts an alternative tube magazine instead of the drum magazine.

It is unknown if Curtis ever put his theory to the test and developed his gas system idea further. It is tempting to wonder if, in 1895 when Winchester were assembling their model of the Curtis, if John Browning or William Mason, who were also developing their own gas operated systems at the time, were aware of Curtis’ idea from 30 years earlier. As such Curtis’, admittedly vague, gas system pre-dates the first patents on gas operation by just under 20 years.


Specifications:

Action: Slide action
Calibre: .32 Winchester Centre Fire
Feed: ~12 round drum magazine


My thanks to the Cody Firearms Museum at the Buffalo Bill Center of the West for allowing me to examine and film the Curtis. Special thanks to the CFM’s assistant curator Danny Michael for making extra time to open up the case where the rifle Curtis is on display so we could examine it and for also sharing Winchester’s technical drawings and other records.

Thanks also to David Minshall of Research Press.co.uk for his assistance finding Curtis’ original British patent abridgement and to John Walter for digging up some additional information about Curtis’ life.


Bibliography:

‘Winchester Suit Decided’, The Times (Philadelphia), 27th June, 1897

‘Recollections of the Forming of the Pugsley & Winchester Gun Collections: A Talk Given by Mr. Edwin Pugsley at the New Haven Meeting of the AS of AC’, September, 1955.

Curtis Rifle, Cody Firearms Museum, online catalogue entry (source)

‘Francis Bannerman VI, Military Goods Dealer to the World’, American Society of Arms Collectors Bulletin 82:43-50, D.B. Demeritt, Jr., (1982)

Patents:

Improvements in fire-arms’ A. Bain, British Patent #1404, 26th June, 1854

‘Breech actions, sliding breech block; stocks’, W.J. Curtis, British Patent #1810, 10th July, 1866

‘Breech actions, hinged and laterally-moving breech block; magazines’, W. Krutzsch, British Patent #2205, 27th August, 1866

‘Magazine Fire Arm’, Spencer & Roper, US Patent #255894, 4th April, 1882

‘Magazine Bolt Gun’, S. McClean, US Patent #723706, 28th May, 1896

‘Breech-loading small-arm’, P.T. Godsal, US Patent #808282, 19th June, 1903

‘Breech Loading Small Arm’, Thorneycroft, Farquhar & Hill, US Patent #827893, 4th August, 1905

‘Fusil équilibré’, A.B. Faucon, French Patent #422154, 15th March, 1911

 

 

BESAL Light Machine Gun

By the Autumn of 1940, Nazi Germany controlled most of mainland Europe, France had surrendered, and the British Army had been forced to evacuate the continent and in the process had lost much of its arms and equipment.

Arms production in Britain was ramped up in order to arm the returning troops and the new units being formed to defend against the imminently expected German invasion. Existing designs like the Bren light machine gun and the Lee-Enfield Rifle were simplified to increase production however new options were also examined. The cheap, quickly manufactured STEN submachine gun was introduced and calls were made for a simplified light machine gun which could be made in any machine or workshop with simple tooling. Even before the fall of France the British Ordnance Board sent out a memo in June 1940, requesting a light machine gun which could be produced in garages and smaller workshops throughout Britain in the event that the Royal Small Arms Factory at Enfield was bombed.

In December 1940, the Chief Superintendent of Design outlined a light machine gun based on the Lewis Gun’s rotating bolt, which fed from Bren gun magazines.

The Birmingham Small Arms company (BSA) were approached to develop a design. BSA tasked their chief designer, Henry Faulkner, with the project. Members of the British Army’s Ordnance Board, however, began to question the decision to have an established manufacturer build a prototype for a gun that was supposed to be assembled in small ad-hoc workshops. As a result the contract was cancelled, however, BSA and Faulkner persisted anyway.

Faulkner, with the help of Roger Wackrow, came up with a weapon which later became known as the BESAL. The design was developed to be simple, cheap and quick to manufacture. The standards of finish were significantly lower than those of the standard Bren then in production. The plan was to issue the BESAL in the event Britain’s armed forces found themselves engaged in a last ditch defence with German invasion either imminent or already underway.

Faulkner’s design was chambered in .303 and fed feeding from standard Bren gun curved box magazines. It used a basic trigger mechanism, a simple pressed gas cylinder and a body held together by pinning and spot welding. The first prototype had a folding but non-adjustable bipod and a skeleton butt stock with a wooden insert. With the manufacture of barrels expected to be a bottleneck to the weapon’s production it was suggested that the spare barrel issued with each Bren gun be recalled for use in the new BESAL. This clearly illustrates just how desperate the situation was expected to be. The first prototype BESAL was ready by late 1941, and testing began in March 1942. The BESAL proved to be reliable and effective during trials.

Faulkner’s design went through a number of iterations but the gneral design had been finalised by May 1942 when BSA, Faulkner and Wackrow filed three patents protecting the design. The principle feature of the later BESAL patterns was the use of a cocking system which saw the operator push the pistol grip forward to catch the bolt, and then pull it to the rear to cock the weapon. This is a system that was later seen in the Czechoslovakian Vz 52/57, 59 series and the Finnish KVKK-62 general purpose machine gun.

Iterations of the BESAL:

1st Pattern: 

Besal 2 001

(Artists impression of 1st BESAL prototype – from Dugelby’s Bren Gun Saga)

  • Right side cocking handle
  • Skeleton butt
  • Simple fixed peep sight
  • Non-adjustable bipod mounted on the receiver

2nd Pattern:

Besal 3 001

(Photograph of a 2nd Pattern BESAL with a pan magazine, note the right-side cocking handlefrom Dugelby’s Bren Gun Saga)

  • Bipod moved to front of the gas tube
  • Universal magazine adaptor fitted for Bren and Motley Pan magazines
  • Full wooden stock – similar in profile to the Lewis Gun’s
  • 2-position sight
  • Disassembly knob introduced

3rd Pattern:

DSC_0828

(Our photograph of a 3rd Pattern BESAL)

  • Pistol grip cocking mechanism replacing the conventional cocking handle

4th Pattern:

Besal 4 001

(Photograph of a 4th Pattern BESAL, note the selector on the pistol grip – from Dugelby’s Bren Gun Saga)

  • Introduction of a selector switch on the left side of the weapon’s pistol grip

In August 1942, BSA submitted the 3rd Pattern Prototype for trials. It was extensively tested between September and November 1942. On 6th January, 1943, BSA renamed the BESAL the ‘Light Machine Gun, Faulkner, 0.303-In Mk1’ in order to prevent confusion with the 7.92x57mm BESA machine gun used in some British tanks. The BESA, also produced by BSA, used a similar pistol grip cocking mechanism. We hypothesise that the the BESAL’s name might come from the BESA, meaning BESA-Light. This, however, is unconfirmed.

It seems that over time as BSA and Faulkner improved and refined the design the BESAL ceased to be a cheap, simple, quickly-made alternative to the Bren. Instead it appears that BSA hoped the weapon might be adopted as a somewhat cheaper substitute standard to the Bren. Final testing of the BESAL were held in March 1943, but by now the weapon’s original purpose had been made defunct by the huge increase in Bren manufacturing capacity. By 1943 the Bren was in production on four continents: at Enfield in the UK, at John Inglis in Canada, at Ishapore in India and Lithgow in Australia. Inglis alone was producing 10,000 Brens a month by 1943.

With the need for a new light machine gun gone the BESAL project was cancelled in June 1943. BSA produced an estimated 20 guns, of various patterns, during the BESAL development project. Today, it is believed that only a handful remain.


Technical Specifications:

Length: 118.5cm (46.6in)
Weight: 9.7kg (21lb 8oz)
Barrel Length: 56cm (22in)
Action: Gas operated, short recoil
Calibre: .303
Feed: 30-round Bren box magazine or 100-round Motley pan magazine
Cyclic Rate: 600rpm


Bibliography:

The Bren Gun Saga, T. B. Dugelby (1999)
Bren Gun, N. Grant, (2013)
Military Small Arms, I. Hogg & J. Weeks (1985)
Modern Small Arms, F. Myatt (1979)

Patents: 

‘Improvements in or relating to gas-operated automatic firearms’, GB572925, BSA, H. A. Faulkner & R.D. Wackrow, 30/10/1945, (source)

‘Improvements in or relating to automatic firearms’, GB572926, BSA, H. A. Faulkner & R.D. Wackrow, 30/10/1945, (source)

‘Improvements in or relating to automatic firearms’, GB572924, BSA, H. A. Faulkner & R.D. Wackrow, 30/10/1945, (source)