SOE Sabotage – Rail Charge

During the Second World War Britain’s Special Operations Executive (SOE) developed a whole series of sabotage devices for use behind enemy lines. Using unique archival footage this series of short videos examines some of the weapons developed for use by SOE agents in occupied Europe. In this episode we look at how rail track could be destroyed by plastic explosive.

Destroying railway infrastructure was a key mission for the Resistance groups and SOE agents active in occupied Europe. Numerous methods of damaging or destroying railways were developed, including Exploding Coal, which we have covered earlier in this series. In this 16mm colour footage, believed to have been filmed in 1940, we get an early look at the methods the SOE were developing to destroy track. The ultimate aim was to derail the locomotive and wreck the train with minimal effort and explosive.

In the footage we see two charges have been placed on the piece of track, with detcord attached to both. A soldier, with what appears to be a lever-action Winchester 94, is then seen taking aim. It seems he’s aiming at a striker board attached to ignite the detcord. He fires, we see a puff of smoke and a second later the charges detonate.

The footage then cuts to several men collecting the debris of the shattered piece of track. The track appears to have two large chunks blown out and the top edge, between the two charges, completely blown off.

An early SOE demonstration with the charges set on the rail (IWM)

Later in the war more testing was done and more refined techniques were developed. In their book SOE: The Scientific Secrets Boyce & Everett note that trials of devices and techniques for destroying railway lines carried out at Longmoor where the British Army had extensive sections of track and samples of rails used in different European countries. Trials to find the right quantity and positioning of explosive charges were carried out in late December 1943, these tests would inform later operations.

scan0001.png
Fog Signal Igniter (SOE’s Descriptive Catalogue of Special Devices and Supplies)

The SOE’s Descriptive Catalogue of Special Devices and Supplies includes a pair of illustrations demonstrating two methods of laying and detonating these charges. A so-called ‘French’ method with a pair of what the catalogue terms ‘Igniters, Fuze, Fog Signal, MkIA’ ahead of the charges in the direction the train was expected from. The train would crush these Fog Signals firing them and igniting a length of detcord linked to a pair of 3/4lb explosive charges fixed to the track as we see in this film.

scan0015
Polish Rail Charge layout (SOE’s Descriptive Catalogue of Special Devices and Supplies)

The alternative ‘Polish’ method had the same sized and located explosive charges but placed a Fog Signal either side of the charges to ensure that no matter which direction the train came from the charges would be detonated. This method was used on single track stretches of railway. Both of these methods were rated to ‘remove about one metre of rail.’

In this photo we see a member of the French Resistance setting an explosive charge on a railway line. While likely a posed photo we do see the pair of Fog Signals which will stet the charge off. These photographs show a pair of trains reportedly derailed by explosive charges.

Déraillement-16-avril-1942-AIRAN
A derailed French train c.1942 (AIRAN)

Boyce & Everett in their book SOE: The Scientific Secrets suggest that as many as 48,000 ‘Railway charges’, presumable a kit, were produced by the SOE. From the footage we can certainly see this method of destroying rails was effective.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Bibliography:

World War II Allied Sabotage Devices and Booby Traps, G.L. Rottman (2006)

SOE’s Descriptive Catalogue of Special Devices and Supplies, (1944)

SOE’s Secret Weapons Centre: Station 12, D. Turner (2007)

SOE: The Scientific Secrets, F. Boyce & D. Everett (2009)

Arthur John G. Langley’s Unpublished Memoir (1974)

Footage use is part of the Imperial War Museum’s collection © IWM MGH 4324 & 4325 and is used under the Non-commercial Use agreement.

SOE Sabotage – Plastic Explosive

During the Second World War Britain’s Special Operations Executive (SOE) developed a whole series of sabotage devices for use behind enemy lines. Using unique archival footage this series of short videos examines some of the weapons developed for use by SOE agents in occupied Europe. In this episode we look at the component which made so many of them possible – Plastic Explosive. This video contains demonstrations of various uses for the malleable explosive.

The footage, believed to have been filmed in 1940, is part of the Imperial War Museum’s collection, it shows plastic explosive being demonstrated in a number of different applications. It was filmed by Cecil Vandepeer Clarke, a British engineer and sabotage expert who was a member of the Special Operations Executive and worked at a number of weapon research and development centres during the war.

Screenshot_20200726_015930.jpg
Screenshot_20200726_015948.jpg
Plastic explosive and its effect (IWM)

The clip features a number of men preparing and shaping plastic explosive charges, adding fuses and detonators.  The explosive is then seen being applied to a steel plate in a ring shape, before being detonated. The resulting explosion punches a round hole through the plate. The film also includes demonstrations of what plastic explosive pressed against a tree trunk can do. Once detonated the roughly 1 foot thick trunk is splintered in two. Metal girders are also shown being prepared with a substantial block of explosive being pressed into its seams.

The SOE’s 1944 Descriptive Catalogue of Special Devices and Supplies lists the ‘Standard Charges’ of 1.5lbs or 3lbs of plastic explosive with an integrated central primer available in rectangular blocks inside a rubberised fabric. Of course SOE agents were taught to use as much or as little explosive as was needed for the task and they were taught to be able to improvise in any given situation.

scan0013.png
A standard 3lb charge, (SOE’s 1944 Descriptive Catalogue of Special Devices and Supplies)

Given the date of the footage the explosive being used is likely and early form of plastic explosive produced at Woolwich arsenal, possibly PETN or Cyclonite better known as RDX, which would have been mixed with a plasticiser to make the explosive malleable. 


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Bibliography:

World War II Allied Sabotage Devices and Booby Traps, G.L. Rottman

SOE’s Descriptive Catalogue of Special Devices and Supplies, c.1944

SOE’s Secret Weapons Centre: Station 12, D. Turner

SOE: The Scientific Secrets, F. Boyce & D. Everett

Arthur John G. Langley’s Unpublished Memoir (1974)

The footage is part of the Imperial War Museum’s collection © IWM MGH 4523, 4524 & 4325 and is used under the Non-commercial Use agreement.

SOE Sabotage – Magnetic Petrol Tank Bomb

During the Second World War Britain’s Special Operations Executive (SOE) developed a whole series of sabotage devices for use behind enemy lines. Using unique archival footage this series of short videos examines some of the weapons developed for use by SOE agents in occupied Europe. In this episode we look at an explosive magnet bomb, designed to be attached to any magnetic surface and detonate to destroy machinery or vehicles. It later evolved into the small pocket-sized ‘Clam mine’.

Today, we’re lucky enough to have some colour footage showing the of testing of a magnetic bomb which could be attached to the petrol tank of vehicles. The footage comes courtesy of the Imperial War Museum.

New Movie (2).Movie_Snapshot
A still from the footage showing the charge placed on the body of the car (Imperial War Museum)

From the film we can see that the bomb consisted of a small block of plastic explosive, a pair of strip magnets (or possible a horseshoe-shaped magnet) and a Switch No.10 time pencil delay detonator. The explosive block itself looks to be slightly smaller than the SOE’s standard 1.5lb charge.

In the film we see the bomb placed on the boot (or trunk) of a saloon car before various civilians and a corporal experiment with various ways of covertly attaching the bomb to the underside of the car. At one point the corporal allows himself to be dragged along behind the vehicle before making his escape.

Luckily the 16mm footage, filmed by Major Cecil Clarke, also shows us the effect of the explosive charge mounted on a petrol tank full of fuel. According to the details listed for the film by the Imperial War Museum the footage was filmed in 1940, at SOE Station XVII, located at Brickendonbury House in Hertfordshire.

New Movie (3).Movie_Snapshot
A still from the footage showing the bomb’s magnets (Imperial War Museum)

This configuration of the bomb doesn’t appear in the Special Operations Executive’s Descriptive Catalogue of Special Devices and Supplies published in 1944. However, Colonel Leslie Wood, Station XII’s commanding officer, described the demonstration put on during a visit by Brigadier Robert Laycock of the Commandos and William Donovan, the head of the American OSS in June 1942. One of the scheduled demonstrations was the “Effect of small ‘magnet’ charge of explosive on petrol tank of car.”

It appears that this ad hoc magnet charge evolved into ‘the Clam’, which was a smaller, version of the magnetic Limpet mine. The Clam evolved through a number of marks with the MkI having a stamped sheet metal casing and the later MkIII using a bakelite, plastic casing.  Both were made up of a plastic explosive charge inside a rectangular, rounded case with a pair of magnets at either end. They were detonated by either a Time Pencil or an L Delay fuse attached to a No.27 detonator. The MkIII had 8oz (226g) of high explosive filler, such as TNT/Tetryl 55/45.

MkIII front
MkIII Clam (Imperial War Museum)

While unlike the larger Limpet they weren’t developed for under water use but the Clam could be mount onto any vaguely flat magnetic surface including engine blocks, fuel tanks, crank cases, cylinder blocks, rail tracks and steel plate.

At just 5.75” x 2.75” x 1.5” they were easily concealable, could be carried in a pocket and were non-descript enough not to draw attention. An estimated 68,000 Clams were made under supervision at Aston House according to Des Turner’s book on Station XII.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Thanks David Sampson of www.millsgrenades.co.uk for the use of his photo of the cutaway Clam.

Bibliography:

World War II Allied Sabotage Devices and Booby Traps, G.L. Rottman

Technology and the Civil War, S. Mountjoy & T. McNeese

SOE’s Descriptive Catalogue of Special Devices and Supplies, c.1944

SOE’s Secret Weapons Centre: Station 12, D. Turner

SOE: The Scientific Secrets, F. Boyce & D. Everett

The footage is part of the Imperial War Museum‘s collection © IWM MGH 4325 and is used under the Non-commercial Use agreement.

SOE Sabotage – The Incendiary Case

Following on from our last video & article looking at Explosive Coal, we continue our series looking at some of the sabotage weapons developed by Britain’s SOE during the Second World War.

We’re lucky enough to have some unique colour footage showing the of testing of some of these explosive devices and in this article we will examine an incendiary-filed case.
In this piece of 16mm colour footage, filmed in 1940 by Captain Cecil V. Clarke, we see what appears to be an attaché case containing three medium-sized bottles, which likely contains a mix of petrol and paraffin or some white phosphorus, prepared for testing at the bomb range at Brickendonbury in Hertfordshire, a Special Operations Executive training and research centre codenamed Station XVII. It’s believed that these films may have been produced as teaching aids for the agents trained at Station XVII and this film may have been shown during a lecture.

New Movie (2).Movie_Snapshot.jpg
A still from the footage showing the case being set up at the test range (IWM)

While incendiary briefcases, attaché cases and even suitcases are listed in the 1944 SOE Descriptive Catalogue of Special Devices and Supplies they were quite different from this case. They were primarily designed for the quick destruction of documents and items carried inside them. They used sheets of potassium nitrate to burn the case’s contents.
The incendiary case seen in this footage on the other hand appears to be designed to be clandestinely placed and detonated with a delay fuse, to set nearby flammable objects on fire. What was described as a ‘Delayed Action Incendiary’.

IMG_20200625_124643.jpg
The Incendiary Suitcase entry from the SOE’s Descriptive Catalogue of Special Devices and Supplies

In this footage of another separate test we get an idea of the destructive capability of just one of the bottles.

It’s possible that this incendiary case was a proof of concept test for the later cases or perhaps a demonstration of a concealed incendiary device Station XVII were working on. SOE developed a large number of bespoke explosive devices for various missions, so while this device may not have become ‘standard issue’, it may have been developed for a specific purpose.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Bibliography:

SOE’s Descriptive Catalogue of Special Devices and Supplies, c.1944

SOE’s Secret Weapons Centre: Station 12, D. Turner

SOE: The Scientific Secrets, F. Boyce & D. Everett

The footage is part of the Imperial War Museum‘s collection © IWM MGH 4325 and is used under the Non-commercial Use agreement.

SOE Sabotage – Explosive Coal

During the Second World War Britain’s Special Operations Executive (SOE) developed a whole series of sabotage devices for use behind enemy lines. Using unique archival footage this series of short videos examines some of the weapons developed for use by SOE agents in occupied Europe. We begin the series with a look at the history and development of Explosive Coal. Explosive coal was designed to explode inside fireboxes, furnaces and coal stores hampering enemy infrastructure.

545343
A still from the film showing a close up of the Explosive Coal (IWM)

I came across this footage while doing some research in the Imperial War Museum’s online catalogue. This piece of 16mm film was filmed by Cecil Vandepeer Clarke, a British engineer and sabotage expert who was a member of the Special Operations Executive and worked at a number of weapon research and development centres including MD1 at Whitchurch and SOE Station XII at Aston.

SOE or Special Operations Executive were a clandestine force tasked with conducting irregular warfare behind enemy lines including sabotage, assassination, intelligence gathering an small scale raiding. One of the sabotage methods developed was introducing an explosive charge into the boiler firebox of a ship or a locomotive or a power station or factory’s furnace. This achieved by disguising the explosive as either a piece of fuel like coal or wood or even as a dead rat – which might be tossed into a firebox or furnace to be disposed of.

CoalTorpedo
What is believed to be one of Courtenay’s ‘Coal Torpedos’

The idea of ‘Explosive Coal’ wasn’t new. The idea originated from the US Civil War, when Confederate Captain Thomas Edgeworth Courtenay designed a piece of cast iron, with a cavity which could be packed with gun powder, that looked like a lump of coal. The Courtenay described them as ‘Coal Torpedoes’, their aim was to damage a steam ship’s boiler enough to cause a catastrophic secondary explosion. While several vessels may have been damaged or sunk by these Coal Torpedoes, the claims are difficult to confirm.

It seems the idea of a coal bomb was resurrected in 1940 and initially a ‘Coal Borer’ was developed and available for use in theatre by mid-1940. The borer could be used by agents to make holes in lumps of coal which could be filled by plastic explosive and a detonator. This was soon superseded by an Explosive Coal Kit which included moulded fake coal and paints to allow agents to match the colour of local coal. The kit included instructions on how to prepare and use the coal bomb.

Arthur Christie, a lab assistant at Station XII, is quoted at length in Des Turner’s book on Station XII. Christie remembered being asked to drill large holes in some coal:

“Another task was collecting the biggest lumps of coal that I could find in the storeroom and taking them to the lab. I had no idea what they wanted them for; it was seldom explained to me and, when it was, it was often as clear as mud. My instructions were to try to drill a large hole in each piece of coal without shattering it. I tried with a brace and a six-inch long tube that had a serrated end. I found that, if too much pressure was applied, the coal would disintegrate. I thought, I wonder what the hell they want this for? Don’t ask, just do it, and I did manage to drill three lumps of coal. I placed the drilled coal on the table of the MI room and set off for the officers’ dining room to inform the CO that I had been successful. I was told to insert about a quarter of a pound of PE and a detonator into the hole and glue the coal dust back over it. The mud in my brain now began to clear. The lump of coal could be placed in the coal tender of a locomotive and find its way into the firebox, or perhaps into the furnace of a factory. Later the PE was dyed black, which was better than using coal dust and glue. This idea led to plastic explosive being moulded into a multitude of objects and colours to fool the enemy.”

Frederic Boyce & David Everett, in their book SOE: The Scientific Secrets, credit Station XV with the development of a moulded clam-shell design using dyed Herculite plaster and coated with real coal dust. A photograph of this can be seen in the SOE’s Descriptive Catalogue of Special Devices and Supplies, along with ‘Explosive Wood’, or as it was officially known ‘Wooden Logs, Explosive’.

Coal
Entries for Explosive Coal and Explosive Wood from a reprint of the SOE’s Descriptive Catalogue

Eventually this was replaced by a bomb based around a charge in a metal casing that allowed liquid plaster to be poured around it, simplifying production and removing any sign of a seam. The coal bombs were detonated by a No.27 Detonator to which either a match headed safety fuse or a time delay fuse was attached.

Once the danger of coal bombs was discovered by the enemy it was also believed that they would have considerable a psychological impact and also cause the enemy to expend considerable resources on protecting and checking coal supplies.

SOEcoal11
Explosive Coal  inert cutaway (courtesy of http://www.millsgrenades.co.uk)

The ‘Explosive Coal’ we see in the footage appears to actually be an incendiary bomb, producing a large amount of flame and heat. This would have been ineffective in a boiler but with a time delay or other sort of fuse it may have been very effective in causing a coal bunker fire aboard a ship, in a factory store, at a coal depot or in a locomotive’s coal tender. Coal fires are extremely difficult to contain and put out.

How effective Explosive Coal was is unclear but it is believed that coal bombs were used by both the SOE and their American counterparts the OSS. Boyce & Everett estimate that about 3.5 tons of explosive coal was made between 1941 and 1945. I’m unsure how many of these were explosive and how many were incendiary, like that seen in the footage here,  but it’s a fascinating asymmetric method of targeting enemy infrastructure at the most basic level.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Thanks to WW2Talk on twitter for their help getting me some scans from the SOE’s Descriptive Catalogue

Bibliography:

World War II Allied Sabotage Devices and Booby Traps, G.L. Rottman

Technology and the Civil War, S. Mountjoy & T. McNeese

SOE’s Descriptive Catalogue of Special Devices and Supplies, c.1944

SOE’s Secret Weapons Centre: Station 12, D. Turner

SOE: The Scientific Secrets, F. Boyce & D. Everett

The footage is part of the Imperial War Museum‘s collection © IWM MGH 4324 and is used under the Non-commercial Use agreement.

Remington’s Hybrid .303 M1903

In 1940, following the evacuation from Dunkirk the British Army was in desperate need of small arms, with over 100,000 rifles left behind in France. In dire need of rifles Britain turned to the US and its huge industrial base and approached a number of companies about tooling up to produce Lee-Enfield Rifle No.4s. Savage Arms took on one contract and projected production of 1,000 per day but establishing production of a rifle US companies didn’t have the tooling and gauges for would take time.

remington_1903_303_rightwm
Right side of the Remington (Matthew Moss)

Remington was also approached by the British Purchasing Commission and asked if they could manufacture up to 400,000 rifles. Remington estimated it would take up to 30 months to tool up for No.4 production. However, Remington believed that if they could lease the old tooling previously used at the Rock Island Arsenal to produce M1903s, from the US Government, they could tool up to produce the M1903 in just 12 months. It was suggested that the tooling be adapted to produce rifles chambered in the British .303 cartridge. Some ergonomic changes could also be made so the rifles mimicked the British No.4.

remington_1903_303_leftwm
Left side of the Remington (Matthew Moss)

 

On 12th December 1940, the British government issued a Letter of Intent to Remington for the manufacture of 500,000 rifles in .303 British. Some sources suggest the British agreed to an advanced payment of $4,000,000. Much of this covered the lease, transport and refurbishment of the M1903 tooling. The rest went on the purchase of raw materials and the necessary accessories for half a million rifles.

The tooling lease was agreed in March 1941, and the US Government also supplied 600,000 stock blanks which had been in storage in exchange for ammunition produced by Remington. With the passage of the Lend-Lease act, on 11th March, the Remington contract came under the control of the US Government, rather than a private order. Remington received the last tooling shipments from Rock Island Arsenal on 22nd April, and by the end of May had the production line up and running.

DSC_0535wm
A detail view of the rifle’s action and follower note the ‘2’ stamped on the follower (Matthew Moss)

A contract to produce the hybrid rifles at a cost of $5 per rifle was agreed in late June. Remington’s engineers began setting up the equipment and working out an ad hoc production layout that would allow 1,000+ rifles per day to be built. At least four pilot models were built, with some of these guns being sent to Britain. The rifles were reportedly received in September 1941, and following preliminary examination were described as “very successful”. Four of the rifles were distributed for further testing but by the end of 1941 the project had been abandoned.

remington_1903_303_nosecap_leftwm
A close up of the adapted muzzle and foresight so the rifle could fit a No.4 bayonet (Matthew Moss)

Remington made a number of external and internal changes to approximate the British No.4. They fitted a front sight post with sight protectors which was moved further back from the muzzle to enable the rifle to mount a Rifle No.4 spike bayonet. As such the upper barrel band does not have a bayonet lug.

Many of these parts are still in-the-white, unfinished, including the barrel, barrel bands, floor plate, front sight assembly, rear sight assembly and the bolt itself. The bolt does, however, have a parkerized cocking piece.

DSC_0524wm
The rifle’s bolt (Matthew Moss)

The hybrid also moves the rear sight back onto the receiver, which necessitates a longer piece of wooden furniture covering where the M1903’s ladder sight would normally be. The style of rear sight was also changed to a two-position flip sight with apertures for 300 and 600 yards mimicking those seen on the No.4 Mk2.

DSC_0541wm
A close up of the rifle’s bolt, cocking piece (which wasn’t properly inserted) and rear sight (Matthew Moss)

 

They also redesigned the charger guide to support the Lee-Enfield-type chargers rather than the M1903 stripper clips. The bolt was adapted to work with Britain’s rimmed .303 round, with the extractor modified for the British cartridges wider, thicker rim.

DSC_0527wm (1)
A close up of the bolt head (Matthew Moss)

The rifle did not have the Lee-Enfield’s detatchable box-magazine, instead retaining the M1903’s 5-round internal magazine. The magazine follower does not appear to have been altered either. Markings on the rifle are minimal and include a ‘7’ on the front sight post, a ‘B2’ on the bolt handle and a ‘2’ stamped on the magazine follower. No roll marks or serial numbers appear to be present.

DSC_0533wm
The faux Lee-Enfield stock with spliced in semi-pistol grip (Matthew Moss)

The rifle’s stock has also been adapted, so instead of a straight wristed-stock a piece of wood has been spliced in to create a Lee-Enfield style contour, forming a semi-pistol grip. The stock is marked with the inspector marks ‘WJS’, which indicate the stock was originally inspected by W.J. Strong and accepted between 1918 and 1921, as well as a pair of later Springfield Armory inspection cartouches: ‘SPG’ – the initials of Stanley P. Gibbs, who was an inspector at Springfield Armory between 1936-1942 and ‘GHS’ – the initials of Brigadier General Gilbert H. Stewart (GHS), Springfield’s commander in the late 1930s- early 1940s. This would suggest that the stock was refurbished at Springfield Armory before being transferred to Remington where it was subsequently adapted.

DSC_0531wm
A detail shot of the stock’s Ordnance stampings (Matthew Moss)

In August 1941, the US began its re-armament programme and in September the British contract with Remington was cancelled. At the same time production in Canada and at Savage’s J. Stevens Arms division in the US had gotten underway and it was decided that the adapted hybrid .303 M1903s developed at Remington was no longer needed. The hybrid contract was formally cancelled in December 1941, and additional .30-06 M1903s and M1917s were taken under the Lend-Lease Agreement to fulfil the needs of the Home Guard. Savage believed that they could significantly increase the number of rifles they could build per day, they managed to enter full production by the end of 1941 and by 1944 had produced well over 1 million No.4s.

1903A3

Remington went on to produce M1903s for the US military, overcoming issues with the original engineering drawings and the tooling dimensions to eventual produce 365,000 M1903s by mid-1943, before switching to production of the M1903A3 pattern and producing 707,629 rifles. In total Remington produced 1,084,079 M1903-pattern rifles during World War Two.

The Remington .303 M1903 hybrids are perhaps the rarest M1903 variant, with only a handful built. They would likely have been perfectly serviceable rifles and helped plug the desperate gap in Britain’s arsenal. Rapidly moving events ensured that these rifles became a footnote in both the Lee-Enfield and Springfield 1903’s histories.

Special thanks to both Remington and the Cody Firearms Museum for allowing us to take a look at this extremely rare rifle.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters. You can also support us via one-time donations here.


Bibliography:

‘Production of Military Rifles by Remington Arms Company in Ilion, New York During World War II’, American Society of Arms Collectors Bulletin 92:14-24, R. Marcot

The Lee-Enfield Story, I. Skennerton, (1993)

The M1903 Springfield Rifle, L. Thompson, (2013)

‘The 1903 Springfield’, HBSA UK, (source)

The Model 1903 Springfield Rife, J. Poyer, (2013)

 

 

The Sten Gun, Its Name and the Men Behind It

The Sten is one of Britain’s iconic Second World War Small arms. Two men are principally responsible for its development Colonel Reginal Vernon Shepherd and Mr. Harold John Turpin a pair of small arms and engineering experts with considerable experience.

Turpin was born in Kent in 1893, served his apprenticeship as a draughtsman in Erith and in 1922, he joined the drawing office at the Royal Small Arms Factory Enfield – Britain’s principal state small arms centre.

1
British Army manual illustration

Reginald Shepherd was born in 1892, received an Bachelor of Science Degree from Leeds University in 1912. In October 1914, he joined the West Yorkshire Regiment as a second lieutenant, serving in Gallipoli and Egypt. After the war, with his engineering background, he assigned as 2nd Assistant Superintendent at the Design Department at RSAF Enfield in December 1922, and promoted to captain.

The two men found themselves joining Enfield at around the same time. In November 1933, Shepherd, now a major, was appointed Inspector of Small-Arms (Class 2) at Enfield and assisted in getting the Bren light machine gun into service. He remained at Enfield until 1936, when he retired from the army and spent a short spell at BSA before being recalled. In late 1939, Major Shepherd returned to active service and once again took up the position of Inspector of Armaments, this time at the Ministry of Supply Design Department at Woolwich Arsenal.

RSAF - Ra
Inside RSAF Enfield (Royal Armouries)

By the outbreak of the Second World War Turpin had become the senior draughtsman at Enfield and when the development of the Lanchester Machine Carbine began he was paired with Major Shepherd to draw up technical drawings for the gun’s production.

The two men decided that a simpler, cheaper submachine gun could be produced and in December 1940 set about designing it, with Turpin in the lead. During the Winter of 1940-41 the first prototypes were built. Development of the first Sten – the T40, was completed on 8th January 1941, taking just 36 days.

14 pilot models were ordered but only two were completed by engineers at the Philco Radio Works in Middlesex: T-40/1 and T-40/2. The gun was initially designated the ‘T-40’ or Turpin, 1940. By the end of January 1941, it had become known as the ‘ST Machine Carbine’. The ‘Carbine, Machine, STEN, MkI’ was approved for issue on 7th March, 1941, with 100,000 guns ordered.

How did the gun become known as the ‘STEN’ and what did Sten stand for?

We know that the ‘S’ stands for Shepherd and the ‘T’ for Turpin, but what about the ‘EN’ – it is generally accepted to represent ‘Enfield’. Why? Because RSAF Enfield is synonymous with British military firearms. Additionally the Bren light machine gun’s name is a portmanteau of ‘BR’ from Brno, the location of the Czech factory the zb.26/30 originated from, and ‘EN’ for Enfield, the British factory that anglicised the design for British manufacture and service.

Enfield, however, wasn’t where the Sten was designed. Turpin and Shepherd claimed that most of the work on the design had been done out of hours. Additionally, during the winter of 1940, the Armament Design Department was relocated, from Enfield to a former Drill Hall in Cheshunt, Hertfordshire to escape the bombing of London.

While the Sten may not have been designed at Enfield, the first prototype was partially assembled there with work also done at Turpin’s own home workshop. A further 46 pre-production pilot models were later ordered from RSAF Enfield, in February 1941.

name insert

Intriguingly, early accounts suggest that ‘EN’ may have stood for ‘England’ – not ‘Enfield’. In October 1942, the fifth instalment of ‘Know Your Weapons’, a semi-official series of weapons manuals printed by the publisher Nicholson & Watson, explains that ‘EN’ did in fact stand for ‘England’.

In June 1943, Turpin penned a semi-anonymous article for ‘The Model Engineer’, about the design and development of the gun, which repeated this claim. An October 1943, article in the US Popular Mechanics magazine, entitled ‘Machine Guns from Backyard’, includes a supposed quote from the inventors explaining that the “E and N stood for England.”

585369
‘The Sten Carbine’, Model Engineer, Turpin, June 1943

A more official account came in June 1949, at a hearing of the Board of the Royal Commission Awards to Inventors (a board set up to reward inventors who had done important war work). One of the board members Lord Justice Sir Lionel Cohen asked Shepherd: “Why was it called the Sten?” The colonel replied: “It was called the Sten by the then Director General of Artillery. The ‘S’ was from my name, the ‘T’ from Mr. Turpin, who was my draughtsman and who did a very large amount of the design, and the ‘EN’ was for England. That is the origin of the name, for which I accept no responsibility.” This suggests that the ‘EN’ standing for ‘England’ may have originated from the upper echelons.

Sadly, there was no officially published explanation of the name as official manuals rarely go into superfluous detail. In 1948, however, Ian Hay published R.O.F. The story of the Royal Ordnance Factories, 1939-1948 in which he stated the ‘EN’ was a reference to the Enfield factory. Similarly, another early published account, D.M. Ward’s 1946 The Other Battle, a history of BSA, also suggested it represented the factory name.

In truth it is difficult to know exactly what the ‘EN’ stood for. It may be that both Enfield and England were discussed and used by various individuals and offices. There may have been an element of propaganda to including ‘England’ in a weapon’s name which led senior officers to push this in the press and direct the gun’s inventors to suggest this was the case too. Of course the authors of those earlier books may have mistakenly believed ‘EN’ stood for Enfield, as it does in Bren. Personally, I’m inclined to follow the primary sources attributed to the two men responsible for the design, and believe it initially stood for England.

Other War
The Other Battle, D.M. Ward, (1946)

Shepherd was awarded an OBE in January 1942, and became the Assistant Chief Engineer Armament Design (A/CEAD), he was promoted to Lt. Colonel in August 1943. He retired from active duty at the age of 55, in January 1947, and was removed from the reserve list. He was granted the honourary rank of colonel. He died in April 1950, aged 58. Turpin retired from RSAF Enfield in 1953, and died in April 1967, aged 74.

Beyond a pair of discretionary payments, £1,500 to Shepherd and a small payment of £200 to Turpin, neither man was officially rewarded as they were deemed to have essentially done what they were paid for, designing small arms. Scant reward and recognition for a weapon which became one of the key wartime small arms of the British and Commonwealth forces.

Our thanks also to Jonathan Ferguson, of the Royal Armouries, for sharing his thoughts on the ‘Enfield’ vs ‘England’ debate.


Bibliography

The Sten Machine Carbine, P. Laidler, (2000)
R.O.F. – The Story of the Royal Ordnance Factories, 1939-1948, I. Hay, (1949)
The Other Battle, D.M. Ward, (1946)
The Sterling Submachine Gun, M.J. Moss, (2018)
The Sten Gun, L. Thompson, (2012)
‘Sten & Bren Guns’, Know Your Weapon #5, (Oct. 1942)
‘The Sten Carbine’, Model Engineer, 3 Jun. 1943, H.J. Turpin
Board of the Royal Commission Awards to Inventors – 1946-49
‘Machine Guns From Backyard’, Popular Mechanics, Oct. 1943


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

The Room The Nazis Surrendered In

Matt recently visited Berlin and took the opportunity to visit the German-Russian Museum in Karlshorst, the site of Nazi Germany’s unconditional surrender. The museum’s centrepiece is the hall in which the surrender documents were signed, restored to how it appeared at that historic moment.

The hall itself is inside what used to be the officers’ mess of the Wehrmacht’s pioneer corps training school No.1 (Pionierschule 1) which was established in 1936 in Karlshorst, an eastern suburb of Berlin. The officers’ mess building was built in the late 1930s. Later, in 1942 the school was renamed the Fortress Pioneer School (or Festungspionierschule).

16-501939.jpg
The Pioneer School’s Officers’ Mess under Soviet occupation, c.1945

During the Battle for Berlin and the Soviet push into the centre of the German capital, the school was occupied by a Soviet battalion on 23rd April. The Soviet military maintained a presence at the former pioneer school for the next 40 years, with parts used by the KGB.

After the war the building housed the Soviet Military Administration in Germany until 1949, when the German Democratic Republic was formed. Today, much of the school has been reclaimed for housing and the mess the building is home to the awkwardly named, German-Russian Museum which tells the story of WWII from the Russian perspective.

DSC_0492wm
The former Officers’ Mess today (Matthew Moss)

The surrender was signed by three representatives of the German high command, Field Marshall Wilhelm Keitel, Admiral Von Friedeburg and Colonel General Stumpff early on the 9th May, 1945 – in the presence of Soviet commander in chief Marshal Georgy Zhukov and Air Chief Marshal Arthur Tedder – Deputy Supreme Commander at Supreme Headquarters Allied Expeditionary Force.

IMG_20200220_141737a (1)wm
The hall in which the surrender was signed (Matthew Moss)

The initial instrument of surrender had been signed in Riems, in France, the day before but the documents were officially ratified in Berlin at 00:16, on 9th May. The Soviets believed it was more fitting that the surrender be signed in the German capital – highlighting the Soviet role in victory. The surrender ended both the last of the fighting around Berlin as well as the war in Europe.

In 1967 the Soviet Armed Forces in Berlin established the museum, then called the ‘Museum of Unconditional Surrender of Fascist Germany in the Great Patriotic War 1941-1945’, the hall was restored to look as it did on the night of the surrender.

It was a surreal experience being in a room which was witness to one of history’s most defining moment and you could certainly feel the history of the room.

You can find out more about the museum here.


If you enjoyed the video and this article please consider supporting our work here. We have some great perks available for Patreon Supporters.

Surplus Zone: PIAT EOD Training Bomb

Whilst looking through the piles of surplus ‘kit’ in my friends warehouse in Germany I came across an interesting find, an Explosive Ordnance Disposal (EOD) training kit that has several examples of WWII and after ordnance that might be found on training grounds and former battlefields throughout Europe.

One of the elements from that training kit was a PIAT or Projector, Infantry, Anti-Tank, round. Many of these have been found across northwest Europe since the end of WWII and it was important for EOD teams to be able to identify them and understand how they work in order to safely dispose of them.

DSC_0042 (1).jpg
A British a PIAT or Projector, Infantry, Anti-Tank (Matthew Moss)

This example is likely an ‘instructional’ round that may have been produced from a previously live round and not subsequently marked as inert. In the video, which was filmed on location from memory, I mentioned that the charge was inside the front cone. Instead the charge was actually just behind the steel cone, which acted as a forcing cone, and has seen been replaced by some sawdust. We can see this in the diagram below, which shows an earlier Mk round but the configuration remains the same:

piat bomb.jpg

PIAT Bomb 1.jpg
A close up of the bomb’s markings (Vic Tuff)

This time we examine an example of the Mk3 PIAT Bomb. When I filmed the video I wasn’t sure of the markings but this chart below more clearly explains them:

PIAT Bombs 1.jpg

There were 7 marks of PIAT bomb:

MkI yellow/green/yellow band 808 stamped on green band, red x’s around nose cone

Mk2 as above

Mk3 yellow/blue/yellow band TNT stamped on blue band, red circle around nose cone

Mk4 as above

Inert bomb black with yellow band INERT in white

Drill bomb black with DRILL in white x 2

Practice bomb – to fit the practice insert tray, painted white and it looks nothing at all like a PIAT bomb!

PIAT Bomb 3.jpg
The inert EOD ‘Mk3’ training round (Vic Tuff)

Our inert bomb isn’t painted black, instead it is painted up as a Mk3 to emulate what a live blind found in the field would look like.

DSC_0712 (1).jpg
An inert ‘Drill’ round painted black (Matthew Moss)

Here’s an extract from the PIAT’s manual explaining how the fuze was fitted to a live round:

From the PIAT manual:
The fuze. – Until required for use the fuze is kept in a container attached to the drum tail by a spring clip….

ii. To fuze. – Remove the fuze container from the drum tail and take out the fuze. Remove the thimble from the bomb nose by pressing it downwards and turning it clockwise. Remove the transit plug from the fuze chamber and insert the fuze flat end first. Replace the thimble. The transit plug should be placed in the fuze container and the latter put in the carrier, in case the bomb should later have to be unfuzed.


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.

The Art of Persuasion – the Abram Games Exhibition

I recently had the opportunity to visit the National Army Museum in London and check out their current exhibition, The Art of Persuasion, a look at the wartime work of graphic designer Abram Games. While you may not recognise the name you will probably recognise some of his impressive and striking posters.

Games’ work is instantly arresting with an eye-catching starkness which underlines the messages he sought to convey. In the video above I aim to give a feel for the exhibition and, if you are unfamiliar with him, a feel for Games’ work.

He joined the army in 1940 and began designing posters for both military and civilian audiences in 1941. Over the next 5 years he designed over 100 posters, some of which have become iconic.

DSC_0451.JPG
Some of Games’ posters designed to dissuade loose talk (Matthew Moss)

Describing himself as a ‘graphic thinker’ Games used silhouettes and contrasting colour and vivid subjects. Largely self-taught Games was extremely passionate about his work and by November 1942 had been made ‘Official War Poster Artist’.

DSC_0454.JPG
A shot of the exhibition space showing some of the posters on display (Matthew Moss)

The exhibition not only displays his work but also explains how Games created his posters, often working from models or taking photographs of soldiers training. Some posters have his original sketches displayed next to them to show how the concepts evolved.

His posters encouraged young women to join the ATS, soldiers to volunteer for the Commandos and civilians to support the war effort. In addition to posters for the War Office, some of his most recognisable work, including the ‘Your Britain, Fight For It Now’ posters were designed for the Army Bureau of Current Affairs in an effort to raise morale and promote the idea of post war reform and progress. He also designed a series of powerful, striking posters for appeals to aid Europe’s Jews, a cause he was deeply connected to as a Jew. Games was demobilised in 1945 and enjoyed a long, successful civilian career, he died in 1996.

DSC_0464.JPG
Appeal posters to aid Europe’s Jews (Matthew Moss)

The National Army Museum’s exhibition works hard to give a feel for not just the work but also the man and his motivations. Games’ wartime posters are extremely rare, unsurprising when most were covered or torn down after a few months, so it was a treat to see them in person. Up close you get a sense of what it would have been like to see one on a barrack wall or a billboard 75 years ago. The exhibition also had some interesting interactive elements with a touch screen allowing visitors to create their own Games-style posters as well as another screen with video interviews with Games’ daughter and people who knew him talking about his work.

Games’ work are not just pieces of art but also important historical objects that can help us understand what the war was like and what motivated people to fight.

Find out more about the exhibition on the National Army Museum’s website, here.


If you enjoyed the video and this article please consider supporting our work here. We have some great new perks available for Patreon Supporters.