TAB 6,000 Subscriber Giveaway Draw

We recently hit 6,000 subscribers and we thought it’d be fun to give away some merch to celebrate.

All you have to do is be a subscriber over on YouTube (http://www.youtube.com/c/TheArmourersBench) and add your contact email to the prize draw form below:

We’ll drawn winners at random to receive a package including: an ACR Colouring Book, a TAB badge, a couple of G11 stickers and a large TAB sticker!

And of course we’ll also pick a couple of runners up to send G11 stickers to!

Thanks for all your support! – Matt & Vic

Colouring the ACR Colouring Book

Hi guys, Matt has put out a couple of videos updating on the ACR colouring book we launched earlier this month. Below is the first of these showing how Matt coloured in his Steyr ACR.

In the second video Matt tackles the Heckler & Koch G11 and gives an update on the colouring book and the channel:

Thanks for watching chaps & thanks so much for your support in 2019, we greatly appreciate it. It’s been a busy year and we hope that you’ve all enjoyed our videos!

You can still pick up a copy of the ACR colouring book and the G11 sticker at www.armourersbench.com/shop.  we’re very much looking forward to seeing your artistic sides when you send us some photos of your colouring to – contact@armourersbench.com.

We’ll be back soon with more videos!

Merry Christmas & happy holidays – Matt & Vic

Introducing the TAB Advance Combat Rifle Colouring Book!

The Armourer’s Bench are proud to introduce our very first ‘informative colouring (coloring) book’. Not only can you colour in the prototypes from the US Army’s Advanced Combat Rifle trials but you can also learn about the guns, how they worked, performed and the outcome of the trial as you colour!

DSC_0009

Why a colouring book? Well, simply put, no one else has done one before! With the help of our brilliant illustrator, Lauren McInnerney, we put the book together to give you guys something a bit different, something fun!

We have a limited run of these little books and we will do our very best to get them our ASAP if you order them for Christmas.

DSC_0060

The book includes detailed original illustrations of each of the four ACR guns: the AAI, Colt, Steyr and of course the iconic HK G11. The 8-page booklets are 8×6″ (or A5 sized) and are available now from our website for $6.00, plus shipping.

You can find them in our new shop, here!

All the funds raised from the sale of the books will go toward supporting TAB through 2020.

But wait! That’s not all! We also have some extremely cool new stickers available. These 4″ cutout vinyl stickers feature the TAB logo on an illustration of the G11.

DSC_0021

And last but not least we also have a small run of TAB logo badges available too!

DSC_0027

You can find them all in our new shop, here!

Heckler & Koch G41

In 1981, Heckler & Koch introduced what would be their last infantry rifle that used their tried and tested roller-delayed blowback action, the HK G41. In October 1980, following NATO’s smalls arms and ammunition testing during the late 1970s, a meeting of NATO Armament Directors, agreed to standardise to the 5.56x45mm round favoured by the United States since the mid-1960s. Standardisation Agreement (STANAG) 4172 saw NATO standardise on the Belgian/FN SS109 ball round. At the same time Draft STANAG 4179 proposed adopting US 30-round M16 magazines as the standard 5.56 magazine pattern, while this proposal wasn’t ratified the M16’s magazine became the de facto standard.

At this time Heckler & Koch were engaged in a major engineering project to develop the G11 caseless ammunition-firing individual weapon. Their main offering for the 5.56x45mm rifle market at the time was the HK33, a rechambered version of the 7.62x51mm G3 developed by Tilo Moller, which was introduced in 1965. The HK33, however, used a proprietary HK magazine and was not compatible with the M16’s magazines. In 1977, as the NATO trials began and it became clear that 5.56x45mm would be adopted, HK began to develop what would become the G41. In 1979 with initial development completed HK submitted 18 G41s for testing with the West German Army. It wasn’t until 1981 that HK introduced the G41 onto the market.

dsc_0862a
Left and right profile views of the G41 (Matthew Moss)

While continuing to use the same roller delayed blowback operating system as the G3, HK33 and MP5, the G41 embodied a number of improvements. While still using a stamped metal receiver it utilised 1mm thick high tensile steel rather than the 1.2mm thick steel used by the HK33. This helped to lighten the receiver. The new rifle also used a lighter bolt assembly, paired with a new recoil spring which comprised of five wound strands around a central coil, rather than a single coil, which had a longer stroke. This acted to lower the felt recoil. The G41, however, had a higher rate of fire at around 850 rounds per minute compared to the 750 rounds per minute of the HK33.  Some of the G41’s bolt geometries were reworked and a new extractor was added.

The G41’s lower receiver was redesigned to allow the rifle to feed from STANAG magazines rather than HK’s earlier proprietary magazines. The cocking lever and forward assist were taken from the HK21A1 (XM262) general purpose machine gun, developed for the US SAW trials.

dsc_0041a
HK G41 (top) and HK33 (bottom) field stripped (Matthew Moss)

It also had a new more triangular polymer foregrip and added a plastic dust cover to the ejection port, a NATO pattern optics mount (meeting STANAG 2324) replaced HK’s claw-mount system, and a spring-loaded folding carrying handle near the centre of balance was added. Importantly it also added a last round hold open device and a bolt release catch, on the left side of the lower receiver.

The usual thumb serrations on the side of the bolt, for pushing the bolt home, were replaced by a prominent forward assist, similar to that found on the M16A1 and other HK weapons such as the HK21 light machine gun and the PSG-1 sniper rifle. HK sales literature described it as a ‘low noise’ forward assist and the manual describes the “quiet cocking of the weapon” – essentially riding the cocking handle back into battery and then pushing the forward assist to lock the action, the system is not as ‘low noise’ as advertised.

dsc_0876
Right side of the G41, note the addition of a forward assist and dust cover (Matthew Moss)

Another important feature of the rifle was the inclusion of a three-round burst setting alongside semi and fully automatic. The G41 could mount a standard G3 bayonet, fit an M16 bipod and had a flash hider designed to enable it to fire NATO standard rifle grenades. The 40mm HK79 under barrel grenade launcher could also be mounted to all variants of the G41, simply swapping it out for the polymer forend. HK referred to this set up as the G41-TGS or ‘Tactical Group Support system’.

9
Spread from a 1985 HK promotional product brochure showing the various G41 configurations (HK)

The G41 came in a number of variants with designations A1 to A3. The base rifle had a fixed buttstock and its rifling had 1 turn in 7 inches with a right-hand twist, in a 18.9 inch barrel. The A1 had a 1 in 12” twist barrel and fixed buttstock. The A2 had a collapsing, single position stock and 1 in 7” inch twist rifling, while the A3 had 1 in 12” inch twist rifling. The 1 in 7” rifling was optimised for the new SS109, while the 1 in 12” optimised for the US M193 round. There was also a shortened G41K model which had a collapsing stock and a 15 inch barrel available with both rifling types.

One of the main issues with the G41 was its weight. Despite efforts to lighten the sheet metal receiver, it weighed more than its predecessor the HK33. According to measurement data compiled by researcher Nathaniel F, unloaded the G41 weighs in at 4.31kgs or 9.5 lbs, this is a full pound heavier than the HK33. A contemporary M16A2 weighed 3.39kg or 7.5 lbs while the Spanish CETME L, a similar stamped receiver rifle chambered in 5.56×45, weighed 3.72kg or 8.2 lbs. The rifle eventually adopted by the Bundeswehr, the HK G36, weighed 3.13kg or 7.3 lbs.  The G41K with its collapsing steel stock wasn’t much lighter, weighing 4.3kg or 9.5 lbs, according to HK sales literature. Another potential issue may have been reliability with the move to the STANAG magazine rather than the optimised proprietary HK magazines may have introduced some issues.

dsc_0040
The bolts of the HK G41 (top) and HK33 (bottom), note the redesigned extractor, forward assist serrations on the bolt carrier and the G41’s thicker but shorter recoil spring (Matthew Moss)

Following NATO’s decision the early 1980s saw a large number of countries looking to replace their ageing 7.62x51mm battle rifles. Sweden began to look for a 5.56x45mm rifle to replace its licensed version of the G3, the Ak4, in the late 1970s. HK could initially only offer the HK33 but the G41, tested later, was also rejected by the Swedes in favour of FN’s FNC. Italy sought to replace the BM59 with a more modern rifle and HK entered into an agreement with Luigi Franchi which saw them offer both the original HK configuration and the develop their own, slightly modified version, the Franchi mod. 641, but the Beretta AR70/90 was selected. Similarly, in 1984 Spain decided to adopt the indigenously developed CETME L. In 1986 the HK G41 was also submitted to the Irish Army’s trials to replace the FN FAL, it was beaten by the Steyr AUG. Initially West Germany had hoped to procure up to 20,000 HK G11 rifles per year, with a total of 224,000 in service by 2003.

dsc_0921
HK’s G11 and G41 (Matthew Moss)

The collapse of the Soviet Union and the subsequent reunification of Germany saw Federal budgets stretched and the G11 programme was subsequently abandoned entirely. The Bundeswehr still needed a suitable rifle to replace the G3 and in the 1990s sought a lighter weight rifle. HK felt their HK50 project, in development since the mid-1970s was a better bet than the heavier G41, and following Bundeswehr trials the G36 was subsequently adopted in 1997. Sadly, I have not been able to get a hold of any of the trials reports from the nations that tested the G41, so can not say with certainty why the countries mentioned above rejected HK’s rifle.

7
Graphic from HK’s manual for the G41 (HK)

From photographs of members of the Turkish Gendarmerie special operations group training at the Foça Commando School, dating from the early 2010s, it appears that Turkey either purchased a number of G41s or Turkey’s state-owned defence manufacturer, MKEK, produced an unknown number under license.At some point in the 1980s the British Army also tested a small number G41s with serial numbers #11131, #11832 and #11833 remaining in UK collections.

Denmark’s elite Jaegerkorpset and Froemandskorpset used the G41 for a time and Argentina’s special forces, including the Grupo de Operaciones Especiales, have also been photographed with both HK G41s and G41A2(collapsing stock) fitted with the TGS package comprising of the HK79 under barrel grenade launcher.

Argentine commandos with HK G41
Argentina’s Grupo de Operaciones Especiales on parade with G41s and the G41-TGS, grenade launcher package (source)

The G41 represents the last evolution of HK’s infantry rifles using the roller delayed blowback action. It comes from a period when HK were developing what they hoped would be the next generation of small arms technology and with the collapse of the G11 programme and the lack of interest in the G41 the company faced financial uncertainty throughout the early 1990s. HK’s move away from the roller delayed blowback action to a more conventional gas operated rotating bolt system, combined with lightweight polymers, in the G36 proved to be more successful than the ill-fated G41.

If you enjoyed the video and this article please consider supporting our work here.


Specifications (standard G41 rifle model):

Length: 39in (99cm)
Weight (unloaded): 4.31kgs or 9.5 lbs
Barrel Length (not including flash hider): 17.7in (45cm)
Action: Roller-delayed blowback
Calibre: 5.56x45mm
Feed: 30 round STANAG magazines
Cyclic Rate: ~850rpm


Bibliography:

The World’s Assault Rifles, G.P. Johnston & T.B. Nelson, (2016)

Die G11 Story, W. Story, (1993)

Full Circle: A Treatise on Roller Locking, R. Blake Stevens (2006)

The 5.56 Timeline, D. Watters, (source)

1985 HK Brochure on the G41 Series (via SAR Archive)

HK G41 Owner’s Manual (via SAR Archive)


Our thanks to the collection that holds this rifle for their kind permission to examine and film it. Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench, 2019.

Stripping the HK G11

Our thanks to the collection that holds the G11 for the privileged and nerve-wracking opportunity to field strip it and take a look inside. If you’d like to know more about the history of the G11’s development you can check out our video and full blog on it here. Vic has done a great series of videos looking at the G11 and the other prototype rifles from the US Army’s abortive Advanced Combat Rifle trials – you can find those here.


In this blog we’ll take a closer look at some of the G11’s components, for a demonstration of dissassembly and and explanation of how the rifle works in principal check out the video above.

Firstly, lets take a look at the exterior of the rifle. The weapon has a box-like polymer coated outer shell. The shell is made up of three parts, with the butt assembly and forend locking into the centre assembly which includes the pistol grip, trigger mechanism and optical sight. The forend and butt are locked into the centre assembly by plastic locking tabs. While stiff and somewhat difficult to depress the tabs are reportedly prone to breaking.

2
Left side view of the G11 (Matthew Moss)

Before we look at the G11’s internals lets take a look at the shell components. Here we can see the inside of the forend, we can see a metal (aluminium I believe) barrel tube into which the barrel slides.

DSC_0980
Close up of the the inside of the G11’s forend (Matthew Moss)

Below is a photograph of the rear of the centre assembly looking forward, the small white circle (sadly slightly out of focus) is the bushing the barrel protrudes through into the forend.

DSC_0999
The G11’s centre assembly houses a metal guide rail and magazine guide as well as the trigger mechanism (Matthew Moss)

Next we have a view of the inside of the rifle’s butt assembly. Note the scuff marks on the inside where the centre assembly has scrapped the plastic. We can also see the locking tab windows which are on the top and bottom of the butt.

DSC_0975
A view inside the G11’s butt stock (Matthew Moss)

Inside the butt we can see the ‘toothed wheel’ and ‘sealing gear’ which are turned when the cocking piece is rotated. These plastic pieces act directly on the action. Behind that is the gas escape valve, which will tap off excess gas if over pressure problems occur with the rifle.

DSC_0976
A close up of the sealing gear and toothed wheel that interface with the cocking handle (Matthew Moss)

The first step to disassembling the G11 is ensuring the weapon is clear by pushing the cleaning brush up into the breech.

DSC_0928
Close up of the G11’s cleaning brush, housed inside the pistol grip (Matthew Moss)

Lets now take a look at the rifle’s action up close, below we can see the G11 with its forend and butt assembly removed. Next to it is the breech cylinder and control disk.

DSC_0942
The G11 field stripped (Matthew Moss)

Here are some photos of the action from various angles:

DSC_0943
A view of the action from the rear. We can see the striker assembly, clamping plate, ejector lever and cylinder retaining catch (Matthew Moss)
DSC_0959
From the right side of the gun we can see the two gears which work the breech cylinder – the spur gear and the actuating gear (Matthew Moss)
DSC_0957
On the underside of the action we can see the rear of the clamping plate, the slide – which is slightly worn, and the sear projecting below it (Matthew Moss)

Here’s some close ups of the breech cylinder and control disk:

DSC_0931
The top of the control disk, which has to be removed before the breech cylinder can be (Matthew Moss)
DSC_0934
Underside of the control disk (Matthew Moss)
DSC_0936
Top view of the breech cylinder (Matthew Moss)
DSC_0937
A view of the square chamber which is a replaceable part which is held in the breech cylinder by a circular retaining spring – seen on the right (Matthew Moss)
DSC_0935
The base of the breech cylinder with notches where the actuating gear interfaces (Matthew Moss)

Here are some close ups of the various parts of the action:

DSC_0961
A close up of the rifle’s spur gear – which gives the G11 its almost clockwork appearance (Matthew Moss)
DSC_0954
Another close up of the underside of the action (Matthew Moss)
DSC_0950
Close up of the end of the barrel, with the square outline of the breech chamber visible – the G11’s caseless ammunition was rectangular but the projectile was round in diameter (Matthew Moss)
DSC_0962
Another shot of the rear of the action showing the striker / firing pin assembly and spring  (Matthew Moss)

According to the 1989 armourer’s manual, provided for the ACR trials, the G11 is made up of a total of nearly 450 individual parts. 144 of those make up the G11’s breech assembly.

With the breech and barrel assembly removed from the centre assembly here’s a diagram I put together showing most of the component parts of the G11’s action:

G11 Diagram Watermarked
G11 Breech & Barrel Assembly Diagram (Matthew Moss)

Next lets take a look at the G11’s barrel assembly with its recoil management system and gas piston:

DSC_0985
A bird’s eye view of the G11’s breech and barrel assembly, note the barrel markings (Matthew Moss)
DSC_0983
A side view of the breech with the cylinder and control disk in position (Matthew Moss)
DSC_0981
A view of the housing of the recoil mitigation system, on the other side is the gas piston system (Matthew Moss)

Finally, here’s a photo of the G11 broken down into its major component assemblies: magazine, forend, centre assembly breech & barrel assembly and butt stock:

DSC_0997
G11 field stripped (Matthew Moss)

If you enjoyed the video and this article please consider supporting our work here.


Bibliography

HK G11- ACR. Armourer’s Manual for Maintenance of Repair of Rifle, 4.92mm, ACR, March 1989 (source)

‘Rifle, 4.92mm, ACR’ Operator’s Manual (source)


Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench, 2018.

Advanced Combat Rifle Prototypes

4 ACR program Rifle (Matthew Moss)
The four rifles tested during the final phases of the ACR program, AAI, Colt, H&K, Steyr (Matthew Moss)

With so few primary or secondary sources on the ACR program available, this article relies heavily on the 1990 program summary report written by the US Army Armament Research, Development and Engineering Center (ARDEC). Over the next three articles we will examine the AAI, Colt, and Steyr ACR entries. The H&K entry was covered earlier – here.

In the early 1980s the US Army began looking into what form a replacement for the M16A1 might take. The Joint Service Small Arms Program undertook a study and found that in the long term a “technology base should be developed to support a significant improvement in capability.” This meant the US infantryman’s next rifle would move away from conventional ammunition and actions.

The Advanced Combat Rifle program began in January 1985, to foster the development and select a rifle that would give troops a distinct advantage on the battlefield. The project’s ambitious aim was to address the human shortcomings of the average soldier in the field. It was found that combat stress, fear and fatigue negatively impacted on a rifleman’s ability to hit a target once engaged in combat.

US Army Future Sldier 1959
US Army’s 1959 Future Soldier Concept, with M14 (LIFE )

The ACR program sought to compensate for this by maximising hit probability when engaging fleeting targets in battlefield conditions. The program called for:

“an enhancement in hit probability of at least 100 percent at combat ranges over the baseline performance of the M16A2 rifle… at extended ranges, the improvement required will be considerably greater than 100 percent. The weapon will be expected to enable the rifleman to detect rargets at ranges greater than 400m in offensive action and at least 1000m during the conduct of the defense.”

This was a tall order, calling for a weapon with an optic and the ability to engage long range targets, which were envisaged to be wearing body armour, but also engage fleeting targets. But the ACR program was far from the US military’ first ambitious small arms project.

The ACR program built on the Special Purpose Individual Weapon (SPIW) program that had been established in the 1950s to produce the next generation of infantry weapon capable of firing busts of flechettes at extremely high rates of fire to improve hit probability. This task proved technologically insurmountable during the 1950s and 60s. The SPIW program ended in the late 1960s, but was followed in the early 1970s by the Future Rifle Program which also proved a failure. Despite these failures the programs helped to push small arms technological boundaries.

In the video below, produced by ARDEC for the US Department of Defence, we see the ACR program briefly explained and the various rifles introduced with some firing footage:

The approaches used by the companies that entered the ACR competition varied greatly. Ranging from rifles with complex buffer systems to weapons that fired duplex and flechette rounds.

The first Request for Proposals was released in September 1985, with six companies successfully submitting proposals. These companies, which were awarded a Phase I contract, were: AAI Corporation, Ares Incorporated, Colt’s Manufacturing Company, Heckler & Koch (H&K), McDonnell Douglas Helicopter Systems (MDHS), and Steyr Mannlicher. In 1987, following Phase I of the program the entries from Ares and MDHS were dropped due to ‘hardware immaturity’ – the concepts were not developed enough. Both companies appealed and were allowed to enter designs to Phase II but neither was sufficiently developed to compete in the later trials and testing.

Each company approached the program’s aims in a different way. Two utilised flechette technology, which had been developed during the SPIW program, with the AAI using a brass cased round while the Steyr ACR used a polymer case. Colt’s entry used a duplex round with two projectiles stacked in the cartridge case. Heckler & Koch’s G11 used a complex buffer system to reduce felt recoil after firing a ‘hyper burst’ of three rounds at ~2,000 rounds per minute.

Lets take a look at the individual weapon systems:

AAI Corporation

AAI Corp ACR rifle
AAI Corporation’s ACR entry (Matthew Moss)

Check out Vic’s video on the AAI ACR and an article with further detail here

AAI Corporation had long been involved in advanced firearms design, taking part in the US military’s previous programs. The AAI ACR was an evolution of the earlier SFR/XM19 rifle. AAI’s ACR was gas-operated, feeding from a 30 round box magazine and fired a brass cased flechette round in either single shot or a high cyclic rate three round bust.

It fired from a closed bolt and used a muzzle device to reduce muzzle climb during burst fire. AAI developed a polymer saboted steel 10.2 gr flechette which fitted within a standard M855 brass case. As a result the rifle uses a proprietary magazine to avoid the accidental chambering of conventional 5.56x45mm rounds. These rounds had a muzzle velocity of 4,600 ft/s.

Diagram showing AAI's saboted flechette round inside a 5.56x45mm M855 case (US Army)
Diagram showing AAI’s saboted flechette round inside a 5.56x45mm M855 case (US Army)

The rifle was designed to mount a quick detachable 4x optic and had a white-highlighted shotgun-style rib sight along the barrel to aid in snap shooting. The rifle was one of the longest entries with an overall length of 40 inches or 101.6cm.

According to the ACR program summary the AAI entry proved to be a “mature design which performed in a reliable fashion” during the field trials.

Specifications (From ACR Program Summary):

Length: 40 inches / 101.6cm
Weight: 9.39 lbs / 4.26kg
Sights: Iron or 4x optic
Action: Gas operated
Calibre: 5.56mm brass cased flechette
Feed: 30-round box magazine

Colt’s Manufacturing Company

Colt ACR rifle submission
Colt’s ACR entry (Matthew Moss)

Check out Vic’s video on the Colt ACR and an article with further detail here

Colt’s entry was perhaps the most conventional of the designs submitted. Based on the rifle the program sought to replace. Colt’s ACR was essentially an improved M16, which fired both conventional 5.56x45mm ammunition as well as a new 5.56mm duplex round. While the duplex round increase hit probability at shorter ranges, it impacted long range accuracy requiring the additional use of conventional M855 rounds.

It incorporated a variety of improvements including a new oil/spring hydraulic buffer to mitigate recoil. A reshaped pistol grip and a hand guard which mounted a sighting rib for snap shooting. The weapon had a flat-top upper receiver which was railed so a 3.5x optic (an early ECLAN) or a more conventional sight/carrying handle could be fitted.

Colt's 5.56mm Duplex round (US Army)
Colt’s 5.56mm Duplex round (US Army)

The rifle’s collapsible six position telescopic butt stock was an improved version of that offered with Colt’s carbines. When at full extension the Colt ACR was the longest rifle tested, at 40.6 inch or 103 cm long. A distinctive proprietary muzzle brake compensator designed by Knight’s Armament was also added.

During testing one of the duplex rounds was not properly seated inside the cartridge case and when fired became lodged in the barrel and during the course of fire and the weapon’s barrel blew when another round was fired. This was addressed by a slightly larger propellant charge. Some of the features developed for the ACR entry were later employed in the M16A3 and later A4.

Specifications (from ACR Program Summary):

Length: 40.6 inches / 103cm (extended) and 36.7 inches / 93.2cm (collapsed)
Weight: 10.3 lbs / 4.67kg
Sights: iron or 3.5x optic
Action: Direct gas impingement
Calibre: 5.56mm duplex round & M855 ball
Feed: 30-round box magazine

Heckler & Koch

Heckler & Koch's G11K2, ACR entry
Heckler & Koch’s G11K2, ACR submission (Matthew Moss)

Check out our full article on the G11 and our introductory video showing two examples of the weapon partially disassembled here

Heckler & Koch had been involved in the West German Bundeswher’s attempts to create a next generation infantry weapon. The result was the G11, the G11 had been in development since the late 1960s and by the time it was entered into the ACR program it had evolved into a complex weapon unlike any other. Utilising a gas-operated, rotary breech to fire self-contained caseless 4.73×33mm projectiles. The rotary breech chamber was introduced as a means of clearing misfired, broken or defective cartridges from the enclosed system. Simplicity was sacrificed to achieve reliability.

The US had awarded H&K a contract to develop caseless ammunition, optics and the salvo concept in 1982. With the G11 in development they then entered the ACR program. The bullpup H&K was the shortest of the weapons entered into the trial at 29.5 inches / 74.9cm. It was equipped by a variable 1-3.5x optic designed by Swarovski.

g11round5
Diagram showing the composition of the G11’s telescoped caseless ammunition (source)

The revolutionary ammunition was developed by Dynamit-Nobel AG.
The 4.73x33mm, 51gr round which was finalised comprised of a solid propellant material body which encased a primer, booster, projectile and a plastic nose cap. Dynamit-Nobel developed the High Ignition Temperature Propellant (HITP) in an effort to prevent accidental ignition (cook-off) of the ammunition’s outer propellant body. The ACR program summary notes that “the majority of the malfunctions/stoppages experience in the field experiment were ammunition related.”

The H&K ACR fed from a single stack, horizontally orientated 45-round magazine which sat above the barrel.

The G11 used a counter-recoil buffer mechanism to allow high rates of burst fire – hyper burst. When firing three round bursts the weapon could send the rounds downrange at a rate of ~2,000 rounds per minute, only when the last round has left the barrel does the barrel and action begin to recoil inside the stock along a central guide. The recoil impulse was then quite strong. When in sustained fire the rate of fire is closer to ~460 per minute. A more detailed explanation of the G11’s action can be found here.

Specifications (from ACR Program Summary):

Length: 29.5 inches / 74.9cm
Weight: 9.15 lbs / 4.15kg
Sights: Variable 1-3.5x optic
Action: gas-operated, rotary breech
Calibre: 4.92mm caseless
Feed: 45-round single stack magazine

Steyr-Mannlicher

Steyr ACR Rifle
Steyr ACR entry (Matthew Moss)

Check out Vic’s video on the Steyr ACR and an article with further detail here

Steyr-Mannlicher’s bullpup entry uses a gas piston driven rising chamber mechanism which rises and falls to chamber rounds as the action cycles. The Steyr ACR, like AAI’s entry, fires flechettes but Steyr’s are housed inside a cylindrical polymer case. The bullpup Steyr was the second shortest at 30 inches (76cm) and the lightest of the rifles submitted weighing 8.5 lbs (3.86kg).

The Steyr ACR borrows its ergonomics from its conventional forebearer, the AUG. With a moulded green plastic stock and a similar pistol grip, trigger and safety layout. Unlike the AUG, however, the ACR uses an AR-15 style charging handle located at the rear of the sight mounting block. The rifle could be fitted with a variable 1-3.5x optic.

The rifle does not use a conventional bolt, instead it has a rising chamber, as a result the rifle fired from an open bolt. A live round only entered the chamber after the trigger had been pulled, thus reducing the potential for cook-offs. Spent polymer cases were pushed out of the chamber and ejected from an opening just in front of the magazine well.

Steyr's Polymer Cased Flechette round (US Army)
Steyr’s Polymer Cased Flechette round (US Army)

Feeding from a 24-round box magazine, made from the same translucent material used in conventional AUG magazines. The magazine goes from double stack to single stack, to allow it to feed reliably, as a result the capacity had to be shortened. A high capacity drum magazine was planned but not provided for the trials. The polymer case held a fin stabilised 9.85 gr flechette with a moulded four piece sabot which broke up soon after exiting the muzzle. This was identified as a shortcoming as it risked hitting nearby troops.

Specifications (from ACR Program Summary):

Length: 30 inches / 76cm
Weight: 8.5 lbs / 3.86kg
Sights: Iron or variable 1-3.5x optic
Action: gas-operated, rising chamber
Calibre: 5.56mm plastic cased flechette
Feed: 24-round magazine


After several years of development, while the Army organised testing, the four firms delivered their prototypes in 1990. During Phase III the rifles were tested on the specially built Buckner Range – designed to recreate field conditions and create fleeting targets at various ranges. The M16A2 was used as a baseline weapon throughout all of the tests which included safety and engineering testing, lethality tests and testing in field conditions.

Initially planned as an all-services test both the US Navy and Marine Corps pulled out of the ACR program in 1987, leaving the Army and Air Force. With the testing complete it was found that none of the rifles proved to be significantly more lethal or effective than the M16A2 they were pitted against. The program summary put a rather positive spin on the program’s failings, concluding that despite the increased hit probabilities not being attained as a technology base program, the ACR program was a success. The soldiers taking part in the field tests performed better than expected and “the baseline performance of the M16A2 rifle was better than anticipated in terms of hit probability.”

The report concluded that the program had helped push small arms technology forward, noting that while flechettes proved to be too inaccurate for an individual weapon,

“The feasibility of caseless and lightweight plastic-cased ammunition has more than been demonstrated in this program. Few problems were experienced with the [H&K] caseless rifles in the test. The past technical barriers of cook-off and vulnerability have now been overcome. …plastic cases cannot be used in conventional weapons like the M16A2, but with weapons specifically designed for it, complete plastic cases are feasible.”

This last observation is something that is again now being developed in the Lightweight Small Arms Technologies (LSAT) program, which has now been linked with the US Army’s current Next Generation Squad Weapon program.

With the end of the ACR program the school of thought moved towards the use of high explosive and airburst munitions by individual soldiers. The Objective Individual Combat Weapon program ran throughout the early 1990s and while it lead to the adoption of some new weapons, such as the M320 grenade launcher, it also failed in its goal to create an integrated individual weapon system.

If you enjoyed the video and this article please consider supporting our work here.


Bibliography:

Advanced Combat Rifle, Program Summary, Vol.1, ARDEC, 1992 (source)

‘Revisiting the SPIW Pt.3’, Small Arms Review, R. Blake Stevens, (source)

Our thanks to the collection that holds these wonderful examples of the ACR rifles


Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench 2018

Photos: Heckler & Koch G11 ACR

Here are a selection of external photographs showing the H&K G11 submitted to the US Army’s Advanced Combat Rifle trials in the mid-1980s. You can watch our introductory video featuring two G11s here.

Note: While this collection of images covers only the externals of the G11, rest assured that if and when we get the opportunity we will follow this up with hi-res photographs of the weapon disassembled!  UPDATE – We disassembled a G11!

1
Right side view of the G11, note the muzzle plug inserted into the barrel (Matthew Moss)
2
Left side view of the G11, note the small window in the magazine showing the follower spring (Matthew Moss)
3
Close up of the right side of the G11’s fire selector (safe – semi – hyperburst – full auto), trigger and grip which enclosed a ‘control brush’ used to check the chamber was empty and in cleaning (Matthew Moss)
4
Left side close up of the G11’s selector, trigger and pistol grip – note also the rifle’s designation,  serial number, presumably manufacturing date and calibre moulded into the weapon’s casing (Matthew Moss)
5
A view of the G11 from above – note the alignment of the magazine and the lack of later additional channels for spare magazines seen in some G11K2s (Matthew Moss)
6
Close up of the G11’s foregrip and sling loop and an empty magazine loaded into the weapon  (Matthew Moss)
7
Close up of the weapon’s rotating ‘cocking handle’and pressure valve, note the white arrow indicating the direction to twist the handle to cock the weapon – the plastic folding handle on this example has sadly broken off, a common issue with G11s (Matthew Moss)
8
Close up of the left side of the G11’s ‘central part’, as HK described it, into which the barrel and breech assembly slide (Matthew Moss)

Many thanks to the collection, which wishes to remain anonymous, that holds this example of the G11 for the opportunity to examine, photograph and film it.

If you enjoyed the video and this article please consider supporting our work here.


Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench 2018.

An Introduction to the Heckler & Koch G11

 

Vic kicks off his series looking at the US Army’s ACR trials rifles with a look at, not one but two versions of, Heckler & Koch’s advanced caseless ammunition assault rifle – the G11. This video is an introductory overview, we’ll be delving into the G11’s insanely intricate and wonderfully complex action in later videos!

DSC_0131
HK ACR 4.92x34mm G11 (Matthew Moss)

There are few experimental weapons that have cultivated myth and reputation like Heckler & Koch’s G11. The product of decades of research and development into what was hoped would be the next evolutionary step in small arms design. The G11 was Germany’s attempt to combine advanced caseless ammunition with a weapon system which could increase the average infantryman’s hit probability. The G11’s action has three distinct modes of fire and uses a complex action and buffer/recoil system to achieve a high rate of controlled fire.

The program began in the late 1960s as part of a NATO initiative, however, it became a primarily Bundeswehr project and over two decades the design evolved substantially. The project sought to increase the hit probability of the individual infantryman. Heckler & Koch’s approach to this problem was the most radical. Working with Hensoldt to develop an integrated optical sight and with Dynamit-Nobel to create a new kind of ammunition.

Numerous studies and theoretical designs were worked up but by the mid-1970s the base design of what would become the G11 was cemented. The design team included Gunter Kastner, Dieter Ketterer, Tilo Moller and Ernst Wossner – all of whom are credited in H&K’s 1976 patent protecting the G11’s rotary action.

The G11 went through dozens of iterations throughout the 1970s and 80s, with the first firing prototypes ready by 1974. Both the design and the ammunition also went through a number of changes.

g11round5
Diagram showing the composition of the G11’s caseless ammunition (source)

The revolutionary ammunition was developed by Dynamit-Nobel AG.

The 4.73x33mm round which was finalised comprised of a solid propellant material body which encased a primer, booster, projectile and a plastic nose cap. Dynamit-Nobel developed the High Ignition Temperature Propellant (HITP) in an effort to prevent accidental ignition (cook-off) of the ammunition’s outer propellant body.

The G11 fed from 45 or 50-round horizontal, single stack box magazines which fed rounds into the action at 90-degrees. The rounds were then rotated into alignment with the breech by the rifle’s action.

The rectangular shape of the Dynamit-Nobel ammunition was more efficient and better suited to storage than conventional circular rounds. The positioning of the magazine along the top of the weapon, parallel to the barrel, also in theory helped minimise the rifle’s profile and reduce encumbrance for the soldier equipped with the weapon.

The G11 is a gas-operated weapon with gas being tapped from the barrel, to cycle the rifle’s cylinder drive system, which rotated the breech through a series of cams and gears. At the heart of the G11 is a complex rotary action. Rotating actions themselves are not a new concept with the earliest dating back to the 17th century, such as the Lorenzoni system.

The G11’s rotating breech was patented in late 1976 by Heckler & Koch. While our initial video does not go into detail on how the G11 operates, we will be covering this in later videos, this article will explain the action in more general terms.

1
H&K’s early patent showing the G11’s rotating action – note the early incarnation of the ammunition with the projectile protruding from the propellant block (source)

Below are two diagrams showing the internal layout and major components of the G11 from a March 1982 draft of the ‘Rifle, 4.92mm, ACR’ armourer’s manual (source). It shows the major assembly groups and also a component list for the breech assembly.

From the diagram we can see the various action parts which feed the projectile into the breech, lock the action and ignite the round. We can also see the counter-recoil system beneath the barrel.

 

 

This slideshow requires JavaScript.

The G11 used a counter-recoil buffer mechanism to allow high rates of burst fire. When firing three round bursts the weapon send the rounds downrange at a rate of ~2,000 rounds per minute, only when the last round has left the barrel does the barrel and action begin to recoil inside the stock along a central guide. When in sustained fire the rate of fire is closer to ~460 per minute.

g11recoil
H&K promotional diagram showing the G11’s mounted recoil system (source)

The buffer spring below the barrel is compressed as the recoiling barrel and breech assembly moves. In sustained fire the buffer spring is partially compressed with each round, but in burst fire the buffer is compressed to its maximum hitting before the buffer housing (which is when recoil from the burst is felt by the operator), this is described as having the barrel and breech assembly ‘float’.

To ready the weapon to fire a magazine was loaded into the magazine channel on top of the G11, a magazine dust door, which automatically closed when unloaded, was depressed as the magazine was pushed home. The cocking handle on the left side of the butt was then actuated. The operator rotated the handle 360-degrees counter-clockwise until the weapon was cocked (essentially like winding a clock). The same process will eject any rounds left in the chamber once the magazine has been removed.

Gas tapped from the barrel cycles the cylinder drive system with gas pushing a piston back to act on a series of gears which rotated the rotary breech from horizontal to vertical to allow a new cartridge to drop into the breech. There was a vent for high pressure gas underneath the butt stock this prevented pressure build up and mitigated some of the thermal build up.

6626263
Members of the Gebirgsjäger (Bundeswehr alpine light troops) on the march with G11s (source)

The G11 K1 was tested by the German Army in the late 1980s with adoption planned for the early 1990s. Heckler & Koch continued to develop the G11, entering the G11 K2 into the US Army’s Advanced Combat Rifle (ACR) trials alongside entries from Steyr, AAI and Colt [all of which we will examine in upcoming videos]. However, the fall of the Berlin Wall in 1989 and the collapse of the Soviet Union in 1991 meant that West Germany no longer had the huge amount of funds needed to field the G11. At the same time the ACR program ended inconclusively and the G11 project was finally abandoned.

The extreme complexity of the design, the inadequacy of the weapon’s ergonomics and its inevitably high production cost casts doubt on whether the G11 would ever have seriously been considered for widespread adoption. Regardless of this the G11 is a fascinating footnote in small arms history representing a false start along a technological avenue which, with the Lightweight Small Arms Technologies (LSAT) program, may still prove fruitful. Heckler & Koch and Dynamit-Nobel’s ambitious design marks one of very few serious and potentially successful attempts engineers to overcome the plateau that firearms technology is currently stuck on.


Stripping the HK G11

DSC_0997
G11 ACR disassembled to its major assemblies (Matthew Moss)

Matt recently had the opportunity to disassemble a G11 and get a look inside the action. In this special video and accompanying full-length article he explains how the rifle strips and how it works! Check out the video here.

If you enjoyed the video and this article please consider supporting our work here.


Technical Specifications (from 1989 H&K Brochure):

Length: 75cm (29.3in)
Weight (unloaded): 3.8kg (8.4lb)
Barrel Length: 54cm (21.3in)
Action: Gas-Operated, rotary breech
Calibre: 4.73x33mm
Feed: 45 or 50-round, single stack, box magazine
Cyclic Rate: sustained fire: ~460rpm /  3-round burst: ~2,000rpm


Bibliography:

Die G11 Story. Die Entwicklungsgeschichte einer High-Tech-Waffe, W. Seel, 1993

‘Shoulder Arm with Swivel Breech Member’, US Patent #3997994, 21 Dec. 1976, (source)

‘Automatic or Semi-Automatic Small Arm’, US Patent #4078327, 14 Mar. 1978, (source)

From the Small Arms Review Archive:

HK G11- ACR. Armourer’s Manual for Maintenance of Repair of Rifle, 4.92mm, ACR, March 1989 (source)

‘Rifle, 4.92mm, ACR’ Operator’s Manual (source)

HK G11 Caseless Ammunition Weapon System. The G11 Rifle. HK Factory Brochure, 1989 (source)

Our thanks to the collections that hold these examples of the G11. While one wishes to remain anonymous, we would like to thank the Dutch Military Museum for access to their G11.


Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench 2017.