Where To Find Us

Hi guys, this is just a quick update to let you know some of the other outlets you can find us on. In the past year TAB has grown a lot and we’ve expanded to a number of social media platforms. We know that people different platforms and may not know about us on others, so we thought we’d put together a quick post to let you know where else you can find us online. It also gives us a little redundancy if there are ever issues with any one platform.

Of course, as you all known, we’re over on YouTube – you can find the channel here.

We also have a thriving Facebook page where we post regularly, you can find the TAB page here.

We have an account over on imgur, initially just for occasional photo hosting but the response to posts over there has been great so we post regularly there – especially gifs and that sort of thing.

Most recently we have also set up a discord server for the growing TAB community to chat to each other in, we discuss all sorts there as well as upcoming content.

We also now have an Armourer’s Bench Instagram account, which is brand new, you can check that out here.

Of course as we announced back in November, we now have a Patreon page as well. TAB is an entirely viewer supported, non-monetised channel, so Patreon support is very much appreciated.
Over there we post sneak peaks from upcoming videos and share behind the scenes stuff from research trips and video production. You can find that here.

Thanks guys! – Matt & Vic

Live Fire: Browning M1919A4

Today’s episode is the last video of 2018, so we thought we’d end the year with a bang, literally. Earlier this year Matt had the chance to get behind an original Browning M1919A4 so we’ve put together a video showing the classic belt-fed machine gun in action with some slow motion footage thrown in!

DSC_0450
Browning M1919A4 (Matthew Moss)

This M1919A4 was built in 1944 at GM’s Saginaw Steering Division plant, in Saginaw Michigan. It was one of nearly half a million M1919A4s built during World War Two. In the video Matt explains a little of the gun’s history and how it worked.

S1270015_Moment
M1919A4 with its feed cover open (Matthew Moss)

This M1919 has been rechambered from the original .30-06 to 7.62x51mm NATO and uses M13 disintegrating links rather than a cloth belt or M1 disintegrating links. My thanks to Chuck and his buddy over at GunLab for letting me put several belts through his gun, it was a lot of fun.

We’ll have a full, in-depth, episode on the Browning M1919 in the future.


Thanks to everyone for watching, liking, subscribing and commenting on our videos this year, we can’t tell you how much we appreciate all the support we have received. I’m very pleased to say we reached 3,000 subscribers before the end of the year, very pleased that our community is growing! We have much more to come in 2019, and we’ll be back with regular videos in January.

Call of Duty: WWII’s Sterling SMG

During a recent discussion over on the HF Twitter page, I was informed to my surprise that the Sterling submachine gun had been added as a DLC weapon to Call of Duty WW2. I thought it would be interesting to take a look at the model used in the game and see how historically accurate it is. I recently finished writing a book about the Sterling and have done some research into the theories of the Patchett prototypes seeing some action during the war.

The model that Sledgehammer Games, the developer, have used appears to be a mix of the early prototypes and the later production Sterlings. In terms of historical accuracy the gun should be correctly referred to as the Patchett Machine Carbine – after its designer George Patchett. It only began to be called the Sterling, after the company that manufactured it in the 1955.

COD Sterling
Developer’s model of the COD: WW2 Sterling SMG (courtesy of Activision/Sledgehammer Games)

The model appears to share some similarities with the original Patchett prototype, including the step in the welded together receiver – the result of using left over Lanchester machine carbine receiver tubes, which was also built by Sterling. The position of the stock hinge point also appears to be in the correct place (it was later moved forward when the stock was modified). However, it appears to be feeding from a much later curved commercial pattern Sterling magazine (you can tell by the zigzag outline on the rear of the magazine and of course the curve – although seemingly not quite as curved as the real thing.) In reality the Patchett prototypes fed from Sten magazines, it wasn’t until after the war that Patchett designed his excellent 34-round magazine.

Here’s a photo of the Patchett’s original tool room prototype that I took last year while researching:

Patchett prototype
Patchett’s Original Toolroom prototype (Matthew Moss)

Note how they even replicated the slanted brazed on rear sight that was added after the first trials. The game developers, however, added a metal guard tab just in front of the ejection port – something that wasn’t added until later and they also gave the gun markings on the magazine housing that mimic the later commercial Sterling markings.

The game model also has the Sterling’s helical grooves on its breech block, something the early prototypes did not have. It seems the developers mashed together the Patchett prototype with later production Sterling L2A3/Mk4s.

Did the Patchett See Action During WWII?

image1
A grainy photograph, sadly lacking provenance, that appears to show members of the Free French SAS with two Patchett prototypes during Operation Amherst, April 1945 (source)

While the early Patchett prototypes may have seen action in late 1944 – 1945 with one or two prototypes possibly making it into the hands of specialist troops there is no solid evidence to support this. There is a tantalising grainy photograph of what is believed to be members of the Free French SAS on operations in the Netherlands in April 1945 (during Operation Amherst). The photo above shows what appear to be two Patchetts during a meeting with local resistance members. There is also an uncorroborated story that one prototype was carried by Lt.Col. Robert Dawson, officer commanding No.4 Commando, during Operation Infatuate but there is no documentary evidence to support this. I discuss these and several other pieces of evidence that support the idea that the Patchett/Sterling saw action in my new book on the Sterling.

I have written a book for Osprey’s Weapon series looking at the development, use and significance of the Sterling, it’s available now, you can find out more about it here.

Gerat 06(H) – Live Fire

This video marks our 40th episode, thanks for watching/reading, lots more to come!

In this episode Matt had the chance to put a few rounds through a replica of a Gerat 06(H). German development of the 06(H) began at Mauser in mid-1944. The 06(H), sometimes referred to as the StG 45(M), was developed from the earlier Gerat 06 which used a gas operated, roller-locked action designed by Wilhelm Stahle.

Gerats
Top: Gerat 06(H) Bottom: Gerat 06 (Matthew Moss)

One of Mauser’s scientists, Dr Carl Maier, analysed the 06’s action and noticed bolt bounce before the action locked. From this he calculated that the heavy gas system could be removed and the bolt simplified by using a roller delayed, rather than locked, blowback action. This is where the rifle gets its “H” suffix, meaning “half-locked”.

Gerat 06(H)
Gerat 06(H) (Matthew Moss)

The rifle is chambered in 7.92×33 Kurz, feeding from a 30-round StG-44 magazine. It has a stamped sheet metal receiver and an in-line layout, sending the recoil impulse straight back. Despite being lighter than the 06, the 06(H) is equally controllable and handier than its heavier predecessor.

The 06(H) is the genesis of the roller-delayed blowback action line of rifles that progressed through work at CEAM in France, developments in Spain at CETME and finally back in Germany at HK. We’ll have a full video discussing the design, development and history of both the 06 and 06(H) in the future and we’ll also delve deeper into the evolution of the roller-delayed blowback system and the rifles that used it.

If you enjoyed the video and this article please consider supporting our work here.


Thanks to our friend Chuck over at GunLab for allowing me to shoot his replica 06(H) and helping with filming.

Shotgun sight Sterling SMG Prototype

Before its adoption by the British Army in 1954 the Patchett Machine Carbine, later better known as the Sterling submachine gun, was extensively tested all over the world. The Patchett went through nearly a decade of testing, evaluation and refinement. It was tested by British troops around the world, from West Germany to Africa, from the middle east to Malaya.

Today, we’re going to examine a unique Patchett/Sterling prototype assembled in Malaya. The gun we’re examining is officially a MkII Patchett Machine Carbine, but as the guns are better known as the Sterling we will refer to it as such from here on out. This prototype has been specially adapted with a shotgun style rib sight to help aiming in jungle conditions.

DSC_0113
Right side profile of the jungle rib sight Patchett prototype (Matthew Moss)

It was in Malaya that the specially adapted but short-lived prototype improvement emerged. As early as December 1952, British troops were testing the gun during operations against communist insurgents in Malaya. The harsh jungle conditions were a challenge for any weapon but an early report testing a single prototype noted that the weapon performed well but one of the issues identified was that the rear aperture sight was found to be “smaller than was desirable” and the report suggested that the aperture be widened to 0.098 inches 2.5mm – the same as the Owen gun. The report also noted that the front sight “did not stand out well in relation to the front sight protectors”.

It seems that when a batch of 75 trials guns arrived in 1953, a number of them were specially adapted in theatre. It was hoped that the shotgun-style rib sight fitted along the length of the receiver would aid snap shooting in the jungle. It was intended to enable users to engage fleeting targets quicker and improve ‘first shot hit’ probability in thick jungle and heavy rainstorms.

96329
British troops patrolling the Malayan jungle, 1957 (National Army Museum)

During operations in Malaya and Borneo, many scouts and point men carried shotguns such as the semi-automatic Browning Auto-5. Shotguns were favoured during jungle operations because of the ease with which they could be quickly and instinctively aimed and their exceptional close-range firepower.

The modification saw the complete removal of the standard front and rear sights and the razing on of a rib sight running along the length of the top of the gun from the muzzle to the rear sight. It appears an armourer cut down and removed the front and rear sight assemblies and used them as mounting points. The first few inches of the rib are stippled to minimise glare and a brass front sight bead has been added to help sight acquisition.

DSC_0232
Left side profile of the jungle rib sight Patchett prototype (Matthew Moss)

The simpler sight rib also helped with another issue that was identified during early jungle testing, it removed the problem of the sights getting clogged with mud. It is unknown just how many were adapted but at least three are known to survive. The jungle-specific modifications were short-lived and not formerly adopted because the rib sight offered poor longer range accuracy.

Here are some more detail photographs of the rib sight prototype:

 

 

 

With the adoption of the Patchett as the L2A1, in 1954, a list of modifications based on trials recommendations was drawn up in June 1953, one of the suggestions was the enlargement of the rear sight aperture to 0.1, (2.5mm) 0.15 (3.8mm) or 0.2 inches (5mm). In August 1953, the infantry board decided that the 100 yard aperture would be 0.15 (3.8mm) in diameter while the 200 yard would be 0.1, (2.5mm). The spacing of the rear sight protectors was also subsequently widened to 0.55 inches (14mm). With these changes made the Sterling saw service in the jungles of Malaya and Borneo for over a decade during the Malayan Emergency and Indonesian Confrontation.

If you enjoyed the video and this article please consider supporting our work here.


Bibliography

Primary Sources:

‘Operational Research Section, Singapore, Technical Note No.5 – Technical Notes on Initial Trials of the Patchett Carbine in Malaya’, Maj. R.St.G. Maxwell, 1th December, 1952, Royal Armouries Library

‘Minutes of a Meeting held at the war office on Friday 7th August, 1953, to decide whether the Patchett sub-machine gun be introduced into the Service as a replacement for the Sten sub-mahcine gun’, Royal Armouries Library



I have written a book for Osprey’s Weapon series looking at the development, use and significance of the Sterling, it’s available now, you can find out more about it here.

The CETME AMELI Light Machine Gun

The CETME AMELI was developed by Spain’s state-owned small arms institute, Centro de Estudios Técnicos de Materiales Especiales or CETME. It was an attempt to develop a light machine gun chambered in 5.56x45mm. Its name, AMELI, is an acronym for ‘Ametralladora ligera’ – simply Spanish for light machine gun.

Development of the AMELI began in 1974 under the supervision of Colonel José María Jiménez Alfaro (who would later become the director of CETME). The Ameli was officially unveiled in 1981 and after undergoing exhaustive military trials was adopted into service in 1982 as the standard squad-level support weapon of the Spanish Army under the designation MG 82. It was manufactured by the Santa Bárbara National Company (now General Dynamics Santa Bárbara Sistemas) at the La Coruña factory.

Centrefire automatic machine gun - CETME Ameli (about 1982) (1)
Early NA or standard model AMELI (Royal Armouries)

The initial model was the NA variant, or Standard Model. This is the model that closely resembles the MG-42 with its conical flash hider. The Spanish military, however, wanted a lighter gun and the NB variant was designed, this is easily identified by the straight flash hider that is now integral with the barrel and not part of the barrel shroud.  The NB model reduced the unloaded weight from the original 7.24 Kg (16 lbs) to 5.4 Kg (12 lbs). However, this weight reduction and the use of materials of lower cost than the original trialled guns caused reliability issues with the AMELI in service. Both variants had a rotating rear disk sight, graduated from 300 to 1,000 metres, and a folding front sight. A mounting block for a British SUSAT optic was later added to the top cover.

Ameli with Winter Trigger Group
Detail view of the AMELI’s receiver from a factory brochure, also featuring the transparent belt boxes which did not go into service (source)

Parts breakages and stoppages plagued the AMELI in service and gunners had to take great care of their weapons to keep them serviceable. One issue was that the stamped forward barrel shroud was a press fit over the receiver and held in place by steel ‘barbs’. Rough handling and downward pressure on the bipod during manoeuvres and firing caused the shroud to deflect, this caused accuracy and functionality issues. To alleviate these problems the Spanish Marines went so far as to TIG weld the forward barrel shroud to the receiver, this fixed most of those issues.

The AMELI’s shape resembles the MG42 machine gun but the similarities are external only. While the MG42 uses the short recoil, roller locked system (where the barrel and bolt recoil together a short distance before separating), the AMELI employs a roller-delayed blowback action with a fixed barrel and a fluted chamber. This system was also used in the CETME Model A, B, C and L rifles, as well as in the HK G3 rifle, the HK 33 rifle and the HK MP5 submachine guns. Similarities with the CETME Model C and Model L rifles are limited to the commonality of the takedown pins and no other parts contrary to popular myth!

Centrefire automatic machine gun - CETME Ameli (about 1982)
Later NB variant of the AMELI – note also the different pistol grip profile, more similar to a CETME L rifle’s (Royal Armouries)

Both AMELI models have similar rates of firing of around 1,000 rounds per minute. The AMELI used the same feeding system used in the MG42, it had a cross bolt safety located at the rear of the top of the pistol grip and a quick change barrel system. To remove the barrel you pull the two sides of the barrel latch, which is built into the rear sight assembly, rotate the handle clockwise until the gate in the side of the barrel shroud opens and then pull the barrel back out of the gun. The front of the barrel is secured by a round ball detent which clicks into the front of the barrel shroud.

CETME also developed a top feeding magazine adaptor system, perhaps inspired by the contemporary FN Minimi’s ability to feed from magazines as well as a bolt. The Bren-like adaptor allows a STANAG magazine to be loaded in upside down into the action. To fit the adaptor the gun’s top cover and feed tray had to be removed. To deal with the magazine housing now obscuring the front sight the adaptor had a new set of sights – one at the rear and a new ‘front’ sight built into the side of the magazine housing, a little like the Australian F1 submachine gun. This short sight radius isn’t too practical for a light machine gun.

1111111111111111111111111111111111111111
A still from the video showing the top feed magazine adaptor’s sights, note they’re offset to the right and the protected front sight is built into the magazine housing (Vic Tuff)

The AMELI was sold to only a few operators apart from the Spanish Military, the Mexican Army and the Malaysian PASKAL Naval Special Forces have used the AMELI but the current status with those operators is unknown. In Spanish service the Ameli has almost entirely been withdrawn from service, being replaced with the Heckler & Koch MG4 5.56x45mm LMG. This is partly due to reliability issues and the original guns being worn out and with spares and new guns no longer available as the original manufacturer ceased manufacture in 2013 and went out of business.

Mexican Army Ameli
Mexican Marines with an NA model AMELI (source)

The AMELI is an interesting machine gun that should have had more success than it did. It was sadly a victim of government cost cutting which much like the British SA80 undermined the quality of the finished product. The story of the AMELI also reminds me of the ArmaLite AR10 produced by Artilleries Inrichtingen in the Netherlands, in so much as the AMELI was produced in very limited numbers (around 3-4,000 guns), in various models and variants with no clear defined history as to why aspects of the design were changed. Evidence of this was seen when a very good contact of mine bought up all remaining inventory from the CETME factory some years ago including around 30 Ameli’s. Apparently there were variations between every one they bought!

If you enjoyed the video and this article please consider supporting our work here.


Specifications (from CETME brochure):

Length: 97cm (38.2 inches)
Weight (unloaded):  NG: 6.7kg (14.8 lbs) NB: 5.2kg (11.5 lbs)
Barrel Length: 40cm (15.8 inches)
Action: Roller-delayed blowback
Calibre: 5.56x45mm
Feed: 100 or 200 round belts
Cyclic Rate: 900-1,250 rpm


Bibliography:

CETME AMELI Operator’s Manual, Small Arms Review Archive, (source)

CETME AMELI Early Factory Brochure (Spanish), Small Arms Review Archive, (source)

CETME AMELI Factory Brochure – including both models (English), Small Arms Review Archive, (source)

CETME AMELI Factory Flyer (Spanish), Small Arms Review Archive, (source)

 

Stripping the HK G11

Our thanks to the collection that holds the G11 for the privileged and nerve-wracking opportunity to field strip it and take a look inside. If you’d like to know more about the history of the G11’s development you can check out our video and full blog on it here. Vic has done a great series of videos looking at the G11 and the other prototype rifles from the US Army’s abortive Advanced Combat Rifle trials – you can find those here.


In this blog we’ll take a closer look at some of the G11’s components, for a demonstration of dissassembly and and explanation of how the rifle works in principal check out the video above.

Firstly, lets take a look at the exterior of the rifle. The weapon has a box-like polymer coated outer shell. The shell is made up of three parts, with the butt assembly and forend locking into the centre assembly which includes the pistol grip, trigger mechanism and optical sight. The forend and butt are locked into the centre assembly by plastic locking tabs. While stiff and somewhat difficult to depress the tabs are reportedly prone to breaking.

2
Left side view of the G11 (Matthew Moss)

Before we look at the G11’s internals lets take a look at the shell components. Here we can see the inside of the forend, we can see a metal (aluminium I believe) barrel tube into which the barrel slides.

DSC_0980
Close up of the the inside of the G11’s forend (Matthew Moss)

Below is a photograph of the rear of the centre assembly looking forward, the small white circle (sadly slightly out of focus) is the bushing the barrel protrudes through into the forend.

DSC_0999
The G11’s centre assembly houses a metal guide rail and magazine guide as well as the trigger mechanism (Matthew Moss)

Next we have a view of the inside of the rifle’s butt assembly. Note the scuff marks on the inside where the centre assembly has scrapped the plastic. We can also see the locking tab windows which are on the top and bottom of the butt.

DSC_0975
A view inside the G11’s butt stock (Matthew Moss)

Inside the butt we can see the ‘toothed wheel’ and ‘sealing gear’ which are turned when the cocking piece is rotated. These plastic pieces act directly on the action. Behind that is the gas escape valve, which will tap off excess gas if over pressure problems occur with the rifle.

DSC_0976
A close up of the sealing gear and toothed wheel that interface with the cocking handle (Matthew Moss)

The first step to disassembling the G11 is ensuring the weapon is clear by pushing the cleaning brush up into the breech.

DSC_0928
Close up of the G11’s cleaning brush, housed inside the pistol grip (Matthew Moss)

Lets now take a look at the rifle’s action up close, below we can see the G11 with its forend and butt assembly removed. Next to it is the breech cylinder and control disk.

DSC_0942
The G11 field stripped (Matthew Moss)

Here are some photos of the action from various angles:

DSC_0943
A view of the action from the rear. We can see the striker assembly, clamping plate, ejector lever and cylinder retaining catch (Matthew Moss)
DSC_0959
From the right side of the gun we can see the two gears which work the breech cylinder – the spur gear and the actuating gear (Matthew Moss)
DSC_0957
On the underside of the action we can see the rear of the clamping plate, the slide – which is slightly worn, and the sear projecting below it (Matthew Moss)

Here’s some close ups of the breech cylinder and control disk:

DSC_0931
The top of the control disk, which has to be removed before the breech cylinder can be (Matthew Moss)
DSC_0934
Underside of the control disk (Matthew Moss)
DSC_0936
Top view of the breech cylinder (Matthew Moss)
DSC_0937
A view of the square chamber which is a replaceable part which is held in the breech cylinder by a circular retaining spring – seen on the right (Matthew Moss)
DSC_0935
The base of the breech cylinder with notches where the actuating gear interfaces (Matthew Moss)

Here are some close ups of the various parts of the action:

DSC_0961
A close up of the rifle’s spur gear – which gives the G11 its almost clockwork appearance (Matthew Moss)
DSC_0954
Another close up of the underside of the action (Matthew Moss)
DSC_0950
Close up of the end of the barrel, with the square outline of the breech chamber visible – the G11’s caseless ammunition was rectangular but the projectile was round in diameter (Matthew Moss)
DSC_0962
Another shot of the rear of the action showing the striker / firing pin assembly and spring  (Matthew Moss)

According to the 1989 armourer’s manual, provided for the ACR trials, the G11 is made up of a total of nearly 450 individual parts. 144 of those make up the G11’s breech assembly.

With the breech and barrel assembly removed from the centre assembly here’s a diagram I put together showing most of the component parts of the G11’s action:

G11 Diagram Watermarked
G11 Breech & Barrel Assembly Diagram (Matthew Moss)

Next lets take a look at the G11’s barrel assembly with its recoil management system and gas piston:

DSC_0985
A bird’s eye view of the G11’s breech and barrel assembly, note the barrel markings (Matthew Moss)
DSC_0983
A side view of the breech with the cylinder and control disk in position (Matthew Moss)
DSC_0981
A view of the housing of the recoil mitigation system, on the other side is the gas piston system (Matthew Moss)

Finally, here’s a photo of the G11 broken down into its major component assemblies: magazine, forend, centre assembly breech & barrel assembly and butt stock:

DSC_0997
G11 field stripped (Matthew Moss)

If you enjoyed the video and this article please consider supporting our work here.


Bibliography

HK G11- ACR. Armourer’s Manual for Maintenance of Repair of Rifle, 4.92mm, ACR, March 1989 (source)

‘Rifle, 4.92mm, ACR’ Operator’s Manual (source)


Please do not reproduce photographs taken by Matthew Moss without permission or credit. ©The Armourer’s Bench, 2018.