Javelin In Ukraine

The transfer of Western anti-armour weapons started before the war even began. The United States transferred significant shipments of Javelin anti-tank guided missiles along with M141 SMAW-D Bunker Defeat Munitions and Stinger MANPADS. 

At the same time as an initiative from the Baltic states of Lithuania, Latvia and Estonia – Estonia also delivered Javelin missiles. For reasons of operational security we don’t know how many Javelins have been delivered to Ukraine by the US and Estonia at this time. However, Estonia is believed to have had several hundred in stock.

Ukrainian troops training with January in February 2022 (Ukrainian MoD)

What is Javelin?

Javelin is an infrared guided man-portable fire-and-forget anti-tank missile. It’s been been in service with over a dozen countries for over 20 years and is still produced by a joint venture between Raytheon Missiles & Defense and Lockheed Martin. It weighs about 22kg or 46 lbs ready to fire and had a detachable Command Launch Unit (or CLU) . Its effective range depends on the type of CLU but the improved Lightweight CLU introduced in 2020 can engage targets out to 4,000 metres (about 3 miles). As of 11 March, Lightweight CLU has not yet been seen in Ukraine. The earlier block 0 and 1 CLU can engage targets out to 2,500 meters (1.5 miles). The CLU enables this with a number of optics including a 4x day sight, a 4x night sight a 9.2x thermal sight. The CLU is also a useful tool for reconnaissance when other NVG and thermal imagers aren’t available. Once the gunner has their target and establishes a lock the missile can be launched.

Javelin’s CLU (US Army)

Javelin’s missile has a soft launch system which limits back blast and firing from relatively enclosed spaces. Once launched the main rocket motor kicks in at a safe distance. It uses automatic infrared self-guidance and has two modes of attack: direct for use against lightly armoured targets and structures and top-attack. In top-attack mode the missile climbs above the target and then plunges down on it to penetrate thinner top armour.

The missile has a tandem shaped charge high explosive anti-tank round. The initial charge can detonate any explosive reactive armour used by the enemy target vehicle while the second shaped charge will penetrate the target’s main armour. When the round detonates it super heats the metal of the armour and creates a high velocity stream of metal which enters the vehicle. More on the complex science behind shaped charges here. It can destroy vehicle’s drive systems or if it enters the fighting compartment it can kill or injure the crew and detonate munitions. 

History

Javelin was developed by Texas Instruments in cooperation with Martin Marietta. In the mid-1980s it beat off competition from Ford Aerospace and Hughes Aircraft to win the US Army’s Advanced Anti-Tank Weapon System—Medium program.

A Ukrainian Depot, early March 2022 (Ukrainian MoD)

In June 1989 Texas Instruments and Martin Marietta were awarded a development contract and the Javelin was adopted as the FGM-148. Javelin continued development and testing throughout the 90s before entering service. Since then it’s been adopted by countries including the UK, Australia, France, Norway, Poland, Taiwan, and many others. According to Raytheon the system is scheduled to be in inventory until 2050.

Javelin In Ukraine

Ukraine adopted Javelin in April 2018, ordering 210 missiles and 37 CLUs with a further order for 150 missiles and 10 CLS in December 2019. Since the threat of invasion became increasingly likely the US provided a series of aid packages worth $260 million. Reports suggest that at least 300 Javelin missiles were delivered as part of these packages. Since then the US has agreed a further package worth $350 million. 70% of this package is said to have been delivered as of 9 March. It’s difficult to estimate how many missiles and CLUs have been delivered so far but the number of missiles is likely over 1,000.    

Still from a Ukrainian training film on Javelin (Ukrainian MoD)

From the sparse evidence available we know that at least some of the Javelin transferred to Ukraine are confirmed to be  from older Block 0 stocks, which includes FGM-148A/B/C and D. The vast majority of Javelins in Ukraine are likely to be Block 0 variants. Block I, the FGM-148E came into service with the US in 2008 and has an improved CLU and rocket motor. Javelin’s shelf life is around 20 years, so it makes sense for these older production but still fully capable missiles to be sent first.

In early February the Ukrainian Ministry of Defense shared a short video showing troops testing the newly-arrived Javelins against tank hulks which had been fitted with so-called ‘Javelin Cages’, a metal structure which Russian tanks have recently added to their turrets. It is believed the cage is intended to detonate the initial charge of a Javelin before it contacts with the tanks explosive reactive armour or the hull itself. However, it is also believed that it is intended to defeat drone-fired micro munitions like the Turkish MAM series. The cage detonating the micro munition before it reaches the tank. The footage shared by the Ukrainian MoD showed that Javelin easily defeated the cages.

Update 15/3/22: We have now seen evidence of Block 1 FGM-148Es in Ukraine. Amael Kotlarski, Janes Infantry Weapons Editor, speculates that these may have originated from the Baltic states’ stocks. At least one example of the Block 1 and a number of Block 0s have been captured by Russian forces so far.

Ukrainian Defence Minister announcing arrival of a shipment of Javelin in January 2022

While at the time of publishing this video there has been no confirmed footage of Javelin in action in Ukraine, no doubt due to good Ukrainian OPSEC, we have seen the system in theatre. 

We got our first confirmation on 3 March, when Ukraine’s Operational Command “North” shared photos of troops being briefed on the use of NLAW and Javelin anti-tank weapons. In the photos we could see numerous Javelin transport cases stacked while troops were briefed on the Command Launch Unit (or CLU). On 6 March, the Ukrainian Armed forces shared a short instructional video on Javelin, showing how the battery is inserted and what the CLUs controls do.

How Capable is Javelin?

The penetration capabilities of Javelin are listed as classified with the USMC’s manual stating “The Javelin penetrates all known armor, “well” in excess of 30 inches [or 760mm] of rolled homogeneous steel.” This means Javelin is more than capable of knocking out any Russian armoured vehicle in Ukraine.

Javelin Missile (US Army)

In terms of performance in Ukraine, one report from 3 March, quoted an anonymous US Special Operations officer who is monitoring the conflict, suggested that of 300 Javelin fired, 280 knocked out vehicles. Time will tell.


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

Javelin – Close Combat Missile System, Medium, FM3-22.37, US Army, 2008 (source)
Rundown: Western Anti-Tank Weapons For Ukraine, Overt Defense, (source)
Introduction to Crew Served Weapons, USMC, (source)
NLAW In Ukraine, Armourer’s Bench, (source)
As Russia Pounds Ukraine, NATO Countries Rush In Javelins and Stingers, New York Times, (source)
$60 Million Worth of US Military Aid Arrives In Ukraine, Overt Defense, (source)
First batch of Estonia-donated Javelin missiles arrive in Ukraine, EER, (source)
New US Military Aid to Ukraine Includes 300 Javelin, nv.ua, (source) Shaped Charge, Global Security, (source)

Beutepanzern

During the First World War Germany struggled to produce its own tanks, with no more than 20 A7Vs being built, instead the Imperial German Army made liberal use of captured allied tanks. In my recent video looking at the British No.44 anti-tank rifle grenade I briefly touched on German use of capture tanks or ‘Beutepanzern’.

The German Army form ed its first Heavy Tank Detachments in late 1917, three of these were equipped with German-built A7V, but the rest were eventually armed with captured British MkIVs. Many of the British tanks were captured following the Battle of Cambrai. Little was changed on MkIVs except for armament with German quick-firing 57mm Maxim-Nordenfelt guns and MG08 machine guns replacing the British 6 pdrs and .303 chambered machine guns for ease of logistics. Though some Lewis Guns pressed into German service were reportedly used aboard the captured tanks.

A Beute MkIV in the field

In this footage from a German newsreel, we see some of the British tanks captured at Cambrai, as well as German soldiers examining the tank and demonstrating how it works. Finally the Kaiser watches a demonstration of the captured vehicle during a visit to the front.   

German workshops converted most captured machine gun-only armed ‘female’ MkIVs into gun and machine gun armed ‘males’. They also added a 13mm T-Gewehr anti-tank rifle in place of their British tank’s forward Lewis machine gun. Some also had one of their sponson guns replaced with a T-Gewehr. An escape hatch was also added to the tank’s cupola-roof. Externally the Beutepanzern were simply painted with Iron Crosses (Eisernes Kreuz) for recognition purposes. Repair workshops were set up to repair and salvage captured British tanks including one near Charleroi (Bayerischer Armee-Kraftwagen-Park Nr. 20).

A Beute MkIV in the field

In terms of doctrine the use of tanks didn’t fit well with the Stormtrooper tactics used in 1918. The slow and cumbersome tanks weren’t ideal for keeping up with the rapidly moving stormtroopers but the tanks did see action throughout 1918. The captured tanks first saw action in March 1918, during Operation Michael, Germany’s Spring Offensive and later during the Hundred Days Offensive. The use of the Beutepanzern also lead to the unique situation – and the first instance of it happening in history – where the same type of tank engaged one another. MkIVs reportedly clashed near Mont Neuve Farm during the second Battle of Cambrai in October 1918.

Alongside battle losses the reliability of the Beute MkIVs also meant attrition of the captured vehicles was high. By September 1918 most of the German Army’s tank detachments had lost all of their vehicles.

Bavarian Army Motor Vehicle Park No. 20 (Bundesarchiv)

The British MkIV was the most commonly used captured vehicle, although a small number of Whippet Light Tanks were captured as well as were various types of French tanks. Several MkIVs appear to have also been used during Germany’s internal strife in 1919.  

While the use of captured tanks was far from ideal, the familiarisation with MkIVs did lead to them to influence German design thinking and a rhomboid layout was used on the A7V-U which was being developed at the end of the war.


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

Beute Mark IV, Landships, P. Kempf, (source)

Beutepanzern, Weapons and Warfare, (source)

British Steel, Iron Cross, Britain at War, (source)

Beute-Tanks, R. Strasheim, (2011)

Ukraine’s Wooden Guns

Recently there’s been lots of reports about Ukraine’s defence volunteers training with wooden guns. 

While this plays on the David & Goliath nature of current Crisis in Ukraine it isn’t without precedent. There is a long historical precedent for recruits and soldiers training with dummy guns going back hundreds of years. 

Ukraine’s Territorial defence battalions were originally formed in March 2014 and since the crisis began there has been a refocus on them with Ukraine’s government announcing plans, in January 2022, to form 150 battalions in 25 brigades. The Territorial Defense Force allows civilians to become part-time members of the Ukrainian military, training in evenings and at weekends. 

Members of the Ukrainian Territorial Defence Force training with wooden rifles

So why are some of the volunteers seen training with wooden rifles? One thing Ukraine isn’t short of is small arms with an estimated ten million state- and civilian-owned firearms. The Ukrainian government has decided that members of the Territorial Defence Force will only be given weapons the duration of drills or defensive operations in the event of war. This means that many will have to arm themselves while this isn’t a problem for those with privately owned firearms. It is estimated that there are a roughly 5 million firearms in civilian hands, though only a fraction of these are registered.  

Those who don’t have weapons are handed wooden dummy rifles. Some airsoft rifles have also been seen in media coverage of the units.

US recruits drilling with wooden rifles c.1917 (US National Archives)

Wooden dummy rifles are more than adequate for safely learning basic drills and getting use to holding and moving with a weapon. Historically, this has been seen countless times. Here we can see American recruits training with dummy rifles in 1917, In 1940 British Home Guard drilled with broomsticks, more recently Afghan security forces were often initially trained with wooden rifles and in South Sudan training with wooden rifles has also been seen. Even in more advanced militaries training with dummy rifles is common with rubber rifles often used in basic training. 

While considered light infantry the training of the Territorial Defense Force is rudimentary and while some media reports have discussed them acting as partisans behind enemy lines they are principally planned to be used to guard important positions in their local areas. 

U.S. Sailors assigned to Naval Support Facility Diego Garcia conduct a mock reconnaissance patrol Nov. 9, 2013 (U.S. Navy/Mass Communication Specialist Seaman Caine Storino)

To be remotely effective the volunteers will need some proper firearms training in weapons handling, drills and the basics of marksmanship. The ad hoc nature of the localised training and the current lack of government issued small arms makes this sort of essential training difficult to organise.

Check out our earlier videos on the Western military aid being sent to Ukraine.

Update (26/02/22):

Ukraine’s Interior Minister Denys Monastyrskiy has given an update on the number of small arms distributed saying some 25,000 rifles have been distributed to TDF volunteers across Ukraine.


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:


In Ukraine, the Formation of Units of the Territorial Defense Forces of the Armed Forces of Ukraine is Accelerating, Ukrainian Ministry of Defence, (source)

Government to Xreate 150 Territorial Defense Battalions, Kyiv Independent (source)

Guns in Ukraine, Gun Policy, (source)

Ukraine’s Citizen-Soldiers Train to Fight in Case of Russian Invasion, French24, (source)

Ukraine’s ‘territorial defense’ Trains Civilians Against Possible Hitches Amid Tensions, AA, (source)

Ukrainians are Training in Civil Defense, Just in Case, PBS, (source)

Civilians Flock to Defend Ukraine as Russia Tensions Mount, The FT, (source)

Lviv Residents are Learning to Shoot: Training Began with Public Utilities and City Council Officials, Radio Liberty, (source)

59-year-old Grandmother Trains with Ukraine’s Home Guard as Everyday People Take Up Arms, NY Post, (source)

Ukraine Readies for Insurgency as Russia Prepares for Possible War, NBC, (source)

Improvised Bazooka Mine

I recently came across an interesting segment in a January 1945 US Army Combat Bulletin newsreel. It showed men of B Company of the 238th Combat Engineers setting up improvised anti-tank mines in Belgium. The mines were fashioned from Bazooka rockets!

A still from Combat Bulletin #39 showing an engineer from the 238th Combat Engineer Battalion setting up an improvised off route rocket mine on a fence post (US Army)

This is a relatively little-known application for the Bazooka’s rockets but a really interesting field expediency. The footage shows engineers cutting the cardboard tubes the Bazooka’s rockets were carried in, down and attaching them to a fence post. Essentially setting up an off-route mine or IED. The engineers run a wire back to cover for remote detonation with some batteries. 

Diagram showing how the rocket could be buried (1944 US Army field manual)

While these seems quite ad hoc it was a secondary use for the Rocket Launcher’s ammunition which was laid down in the Bazooka’s 1944 basic field manual. It doesn’t appear in the 1943 technical manual for the M1A1 launcher at all but the 1944 manual explains that 

“In addition to its use as a projectile when fired from the launcher, the rocket may be prepared for firing electrically and used as an improvised anti-tank mine.”

Diagram showing the transport packing and transit cannister tube for the M6 Rocket, the tube could be used as a makeshift launch tube (US Army)

This improvised method of use was also demonstrated in a training film for the Rocket Launcher, a Bazooka team are seen digging a pit in a road and burying a rocket in its makeshift launcher just as laid down in the manual. The training film explains it best…

A still from the 1943 US Army training film for the Bazooka, demonstrating the setting up of an improvised rocket mine (US Army)

The 238th Combat Engineer battalion fought in the Battle of the Bulge and received a commendation from Major General Matthew B. Ridgeway, commander of XVIII Corps, for helping to establish a line of defence against the German offensive. The commendation read: 

“The work of the 238th Engineer Combat Battalion in the construction of the initial barrier in the vicinity of Manhay was outstanding and materially assisted the Corps in holding off the attack of the enemy in that area.”

Illustration from a 238th Combat Engineer Battalion Association book showing knocked out German tanks around Grandmenil (238th Combat Engineer Battalion Association)

Whether this technique of improvising a mine from the rockets was used during the battle is unclear but I found the footage of the engineers demonstrating the set up fascinating. Its always interesting to see suggestions from manuals and training films put into action in the field so I was excited to come across this footage. 


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

238th Combat Engineer Battalion Association (source)

The Ardennes: Battle of the Bulge, H.C. Cole, 1965, (source)

Footage:

The Anti-Tank Rocket M6” 1943 US Army Training Film; M1 & M1A1 Bazookas, War Department

Combat Bulletin No.39, War Department

The 2B25: Russia’s Silent Spigot Mortar

Recently there have been a number of defence media articles about Russia’s new ‘silent’ mortar. It’s often described as cutting edge technology but in reality it’s based on technology over 100 years old. 

The Russian 2B25 82mm mortar is in fact a spigot mortar. What is a spigot mortar? Unlike a conventional mortar which uses gravity acting on the bomb dropped into the tube striking the anvil or striker at the base of the tube detonating the propellant cartridge in the bomb and launching the mortar bomb. A spigot mortar alters this principle, instead using a spigot or metal rod onto which a bomb with a hollow tail is placed. The bomb’s tail then becomes the element which contains the pressure from the detonated propellant charge rather than the tube as in a conventional mortar. The 2B25’s bomb has a plug at at the base of the propellant cartridge which when fired is pushed down the bomb’s tail tube by the expanding propellant gases – essentially acting as a piston. The plug is prevented from leaving the tube by a constriction at the tube’s end. This captures the gases and reduces the report of the mortar.

The 2B25 82mm Mortar (CRI Burevestnik/Russian Army)

Perhaps the most famous spigot mortars are the Blacker Bombard and PIAT (Projector, Infantry, Anti-Tank) of world war two. I wrote a book about the PIAT a couple of years ago so the 2B25 really interests me as a niche application of the same technology!

Spigot mortars have a number of benefits and drawbacks which set them apart from conventional mortars, including a shorter range and slower rate of fire than conventional mortars, but the advantages primarily seized upon is their reduced sound signature and lighter weight. The ignition of the propellant cartridge against the spigot, inside the bomb’s tail tube removes visible flash and is much quieter than a conventional mortar which. The 2B25 optimises this by enclosing the bomb inside a light weight tube to further reduce the visual and audio signatures of the weapon firing even further.

Why is this important and why are ‘silent’ mortars useful? With a reduced signature on the battlefield the chances of effective counter-battery fire are reduced enabling the mortar fire to be more effective and sustained. The developers claim that the 2B25 is about as loud as AK fitted with a PBS-1 suppressor, about 135db, substantially quieter than a standard mortar.

The patent for the 2B25’s bomb, filed in August 2011 and published in February 2013, states:

“proposed shell comprises main part and tail. Tail case accommodates propellant charge and combination piston with initiator. Shell is composed of detachable sealed screw assembly of tail and main part. Tail is furnished with fin. Tail charge chamber accommodates multi-section propellant to be implemented in various versions.”

Patent diagram of the 2B25’s self-contained piston bomb (Russian Patent #2494337)

The 2B25 first began to appear in western media back in 2018 but the design dates back to at least the early 2010s. Developed by the central research institute Burevestnik, it is manned by a two man team and can be transported in a backpack. Officially released data for the mortar suggests it has a maximum range of 1,200 metres with a rate of fire of perhaps 15 rounds per minute. It is reportedly equipped with a standard MPM-44M optical mortar sight.

The mortar appears to be of a fixed spigot design with a firing pin running inside the spigot. This means that unlike the PIAT the 2B25’s spigot does not move. Once the bomb is slid into the mortar tube, down onto the spigot, the operator pulls a handle at the base of the weapon downwards to cock the weapon and then pushing it up to fire it. 

The 2B25 82mm Mortar (CRI Burevestnik)

The mortar’s baseplate is said to be made of an aluminium alloy with the whole weapon weighing 13kg or 28.6lbs. The mortar’s 3VO35 bomb itself weights 3.3kg and has a 1.9kg warhead.

Both Russian and western media reports have stated that the weapon has been delivered to the Russian armed forces with some suggesting it was in use by “special-purpose units”, possibly Spetsnaz 

The 2B25 certainly isn’t the only modern spigot mortar in service, others include the Fly-K from Rheinmetall. Personally, I find it fascinating that spigot-based weapons still have a place on the battlefield, albeit a niche one.


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

82mm 2B25 Mortar, CRI Burevstnik, (source)

Mortar Silent Shot, Russian Patent, RU2494337, 16 Aug. 2011, (source)

Mortar 2B25 “Gall” No noise and flash, TopWar, 26 Sept. 2018, (source)

Advanced Silent Mortars Start Arriving for Russian Army, Tass, 7 May 2019, (source)

Russian-made 2B25 “Gull” Silent Mortar will be Modernized in the Imminent Future, Army Recognition, 13 Nov. 2015, (source)

Russian Commandos Are Getting “Silent” Mortars, The Drive, 7 Sept. 2018, (source)

Footage:

Silent Killer: Test Footage of the Latest Mortar for Special Forces, Zvezda, 25 Dec. 2015, (source)

2B25 Silent Mortar, Rosoboronexport, 24 Nov. 2021, (source)

82mm Mortar Silent 2B25, Russian TV Report, 27 Feb. 2014, (source)

Britain’s First Anti-Tank Weapon

The British Army’s first dedicated anti-tank weapon was a rifle grenade. The No.44 Rifle Grenade was developed towards the end of the First World War to take on the emerging threat of German tanks.

A British officer firing a No.3 Mk2 Rifle Grenade (IWM)

The No.44 could be fired from a Short Magazine Lee-Enfield MkIII rifle, the British had developed a plethora of rod and cup discharger based rifle grenades but the No.44 was the first specifically designed with tanks in mind. 

By 1918 the German Army had responded to the threat of British and French tanks by developing their own, the A7V, albeit in small numbers, and by fielding captured allied tanks. 

The A7V was a leviathan at over 3.3m tall and more than 30 tons. It would be crewed by at least 18 men. It was decided that the infantryman needed an effective means of taking on tanks.

A German A7V (US National Archive)

Sources suggest that the grenades were developed by the by the Royal Engineers Experimental Station with input from the Tank Corps. The No.44 was largely based on the earlier No.24 rifle grenade. The British Army had been using rifle grenades with rods since February 1915 with the No.2 rifle grenade. 

No.44 Anti-Tank Grenade (IWM)

A myriad of grenade designs were developed during the war with dozens of designs entering service between 1915 and 1918. Eventually the British Army moved away from using rodded rifle grenades, because of the implications of barrel wear from the friction of the rods, and focused on discharger cup based designs. The No.44’s spiritual descendent, the No.68, introduced in 1940, would follow this trend and be fired from the same discharger cup used by to fire No.36 grenades fitted with a gas check.    

The No.44 grenade itself is made up of a pair of pressed tin plate pieces which make up the top and bottom of the bomb with a rolled sheet of tin making up the central body. The parts were soldered together with a filling plug also soldered into the top of the grenade. The grenade itself contained either Amatol 80/20 or Amatol 83/17 explosive, sources suggest about 11.5 ounces. While externally it may resemble later shaped charges, it was not, the explosive filled the space around the central detonator assembly.

Sectional diagram No.44 Anti-Tank Grenade

The ignition system was essentially a .297/230 cartridge case and a detonator. On firing a release socket moved to allow the retaining bolts to release the striker (or needle pellet) it had been retaining. The striker was then simply held back from the detonator by a spring. When the grenade struck its target inertia cause the striker to over come and compress the spring, allowing the striker to ignite the detonator and set off the grenade’s main filling. Given mass of the bomb and the type of detonator used the No.44 was probably intended for use at very short ranges.

Soldiers firing rod rifle grenades (IWM)

To use the grenade the firer would remove the wire fastening around the grenade to free the canvas vane. This would also allow access to the safety pin. The top plug could be undone and the detonator inserted. The rod was then slid down the muzzle of the user’s rifle. The safety pin could then be removed. A blank cartridge would be loaded into the rifle and when the trigger was pulled the was grenade launched by the gases from the cartridge pushing the rod out of the barrel. The No.44’s flight would be stabilised by the canvas skirt or vane.    

There’s no mention of the grenades in the British Army’s Small Arms Committee Minutes so its development must have been documented elsewhere. It does, however, appear in the List of Changes and is known to have been issued from April 1918 onwards but further primary research is needed to find out more about its development, designers and testing.

No.44 Anti-Tank Grenade (Matthew Moss)

The No.44 remained in service into the inter-war period but does not appear in any of the post-war Small Arms Training manuals. Several were published during this period, the first in 1924 and a second in 1931 – the No.44 appears in neither of them. The final pre-war Small Arms Training pamphlet on grenades, published in 1937, is confined to just the No.36 grenade. According to Ian Skennerton’s book on British grenades there were no No.44s remaining in stores by April 1931 and it was declared obsolete. 

Sources disagree on the number of No.44s manufactured with some suggesting just under 100,000 while others suggest between 125,000 and 150,000. According to Skennerton 9,800 were issued between April and November 1918. A very small amount when compared to the hundreds of thousands of other, more widely used grenades held in stores at the end of the war.  

The German A7Vs were first deployed in March 1918, but only saw their first action the following month. With only 20 A7Vs built and the design proving relatively impractical the Allies had little to fear from German tank attacks. Sadly, there are no readily available records of the No.44’s use or its effectiveness.

British solider firing a cup discharger rifle grenade (IWM)

The A7V’s armour consisted of 5 to 30mm of steel plate depending on location on the tank. This steel plate was not hardened which may have increased the No.44’s effectiveness against it. It may be that the No.44 would have had to have been fired at close range and strike a vulnerable point on the attacking vehicle to have the most effect.

While not the only anti-tank grenade to be developed during the period, the French also developed several rifle grenades, and not as famous as the German T-Gewehr, it does represent Britain’s first dedicated infantry anti-tank weapon. 


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

An Introduction To British Grenades, I.D. Skennerton, (1988)

British Grenade Rifle No. 44 Anti-Tank, AmmunitionPages, (source)

Grenade, Rifle No 44 A.T. (Anti Tank), Imperial War Museum, (source)

Grenade, Rifle, No 44 Anti-Tank (Sectioned), Imperial War Museum, (source)

British No.24 Mk.II Rod Grenade, Inert-Ord.net, (source)

Men Against Tank, J. Weeks, (1975) 

NLAW In Ukraine

NLAW is the British Army’s name for the Saab Bofor’s developed MBT LAW, in the early 2000s the British Army was looking for a more capable replacement of its LAW80. The Saab offering, Next Generation Light Anti-tank Weapon, won the contract in 2002 beating out several competitors including the SRAW-based Kestrel from Lockheed Martin/BAe. 

British soldier firing NLAW (British Army)

The UK has just announced the transfer of light anti tank weapons to Ukraine in light of the continuing tensions with Russia. As such the UK is the latest nation to announce that they will be providing weapons to Ukraine. They follow US shipments of Javelin Missiles in December 2021, year and we’ve already seen these in the hands of Ukrainian troops. Most recently it has been confirmed that Lithuania plans to supply anti-tank systems to Ukraine too. The UK’s defence minister Ben Wallace stated that: “We have taken the decision to supply Ukraine with light, anti-armour, defensive weapon system”, while this does not specifically name NLAW, this describes the role which NLAW fulfils. 

So what is NLAW? 

NLAW is a disposable, shoulder-fired, single shot system which weighs about 12.5kg or 27.5lbs. It uses a predicted line of sight guidance system which calculates where the target will be when the missile reaches it. Like Javelin it is capable of targeting a tank’s weakest point, its top side.

NLAW (Saab)

The NLAW has two firing modes: Direct Attack, with the missile flying directly to point of aim, useful for engaging static targets. While the second, Overfly Top Attack, uses the Predicted Line of Sight (PLOS) system. The guidance algorithm optimises the trajectory of the warhead on an elevated flight path over the target with the onboard proximity fuze then detonating and firing an explosively formed penetrator down onto the target. 

In British service the NLAW was selected to replace the LAW-80, a 94mm unguided anti-tank rocket, British Army analysis found that in order to provide adequate close range defence against armoured vehicles “significant numbers of NLAW will be required in order to ensure there is sufficient coverage of the battlefield.” This meant the system had to be capable and affordable. Since its delivery and introduction into service in 2009, the NLAW has been the secondary anti-tank weapon of the British Army’s specialised anti-tank platoons’, with the Javelin being their primary. The NLAW is also available for issue as the primary infantry light anti-tank weapon. The British Army describes it as “non-expert, short-range, anti-tank missile that rapidly knocks out any main battle tank in just one shot by striking it from above.” While not cheap, at around £20,000 per unit, NLAW costs significantly less than the longer-ranged, more complex Javelin [estimated at around £70,000 per unit]. It is currently in service with Finland, Sweden, Luxembourg, Indonesia and Saudi Arabia. It has seen action during Saudi Arabia’s interventions in Yemen.

A rifleman of 1 Gurkhas fires an NLAW (Corporal Stephen Harvey / UK MoD)

The weapon can engage close range targets at as close as 20m and uses a soft launch system that enables it to be fired from enclosed spaces. It can take on static target at 600 to 800m and moving ones at 400m. Technically, NLAW is not an anti-tank guided missile as the missile is not guided by an onboard system once it has been fired. Instead it used a Predicted Line of Sight (PLOS) system which enables it to be used like a fire and forget ATGM. 

The weapon’s operator activates the PLOS system and the user tracks the target for 3 to 6 seconds in the NLAW’s Trijicon Compact ACOG 2.5×20 sight before firing, the guidance system calculates the predicted flight path to the target to ensure a hit.

The number of NLAW being dispatched by the UK has not been confirmed although several flights of RAF C-17s were made overnight on 17th January, 2022. Footage released by the Ukrainian Ministry of Defence showing the arrival of the NLAWs enables us to estimate that each flight could have carried somewhere between 180 and 216 NLAWs.

A still from a Ukrainian MoD video showing the arrival of the NLAWs (source)

It isn’t clear just how many NLAW systems the UK has stockpiled but it is likely that as missile systems have a limited shelf-life that the older systems may have been transferred first. The terms of the agreement to transfer the NLAWs hasn’t been made public but it was confirmed small teams of British troops had accompanied the weapons to provide initial training to Ukrainian forces on how to use them. This is in line with Operation ORBITAL, the UK’s training mission to Ukraine which was established in 2015, following the illegal annexation of Crimea. Wallace was keen to stress that “this support is for short-range, and clearly defensive weapons capabilities; they are not strategic weapons and pose no threat to Russia. They are to use in self-defence and the UK personnel providing the early-stage training will return to the United Kingdom after completing it.”

As of the time of writing more than 10 flights have been observed carrying military equipment from the UK. It is estimated that some 2,000 NLAW have been transfered. This was tacitly confirmed by remarks made by Wallace to the press.

A Ukraine MoD photo showing a training session on NLAW being delivered by members of the OP Orbital training team. (Ukraine MoD)

The UK has been working with Ukraine not just through Op ORBITAL but also more broadly with a number of agreements being signed in 2021 to support Ukraine’s naval capability. While the usefulness of the NLAWs are confined to close range engagements the move is clearly a symbolic signal to Russia. 


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

Next Generation Light Anti-Tank Weapon (NLAW), ThinkDefence, (source)

Britain Delivered Military Weapons to Ukraine, Ukraine MoD, (source)

UK Delivers Light Anti-Tank Defensive Weapon Systems To Ukraine, OvertDefense, (source)

One Shot – One Armored Target. Javelin ATGM, Ukraine MoD, (source)

Statement by the Defence Secretary in the House of Commons, 17 January 2022, UK MoD, (source)

NLAW, Saab, (source)

British Military Aircraft Rapidly Supplying Weapons to Ukraine, UKDJ, (source)

NLAW – The Ultimate Tank Killer, Saab, (source)

NLAW | 2 PARA | Noble Partner, British Army, (source)

Small Arms & Support Weapons, British Army, (source)

Ministry of Defence Major Projects Report 2008, National Audit Office, (source)

The VHS-2 In Iraq

The VHS-2 bullpup rifle manufactured by Croatia’s HS Produkt became one of the most frequently seen rifles during the Iraqi counter-offensives against ISIS during 2015-17. The rifle regularly appeared in news reports and social media posts and became somewhat synonymous with the fighting for Fallujah and Mosul.

A screen capture of combat footage from Iraq c.2016-7 featuring a member of the Emergency Response Division with a VHS-2

Check out the full article accompanying this video at Silah Report.


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Cold War Weapons: The Off-Route Mine

During the Cold War NATO was understandably interested in capable anti-armour weapons. In this video/article we will examine the Off-Route Mine which features in footage from several British Army training films. They show a team of Royal Engineers setting up an L14A1 off-route mine ready to ambush attacking Soviet tanks.

Unlike a conventional mine which detonated vertically when a vehicle drove over it, the Off-Route Mine would be tripped by a breakwire set across a vehicles likely path. When the wire was tripped or broken the mine’s charge would be electrically detonated and the blast would project horizontally.

An Off-Route Mine in position (IWM)

What the British termed the L14A1 was developed in the early 1970s by France’s state arsenals. In French service it was known as the ‘Mine Anti char à action horizontale Modèle F1′ (or MI AC AH F1). It was manufactured throughout the 1970s and 80s by GIAT Industries.

The mine was essentially an electrically fired shape charge, it used the Misznay-Schardin effect rather than the Monroe effect. The former relies on a shallower, concave shape charge, which has a copper cone that is super heated by the explosion and fired out towards the target. This gave it the ability to project its cone further and removed the need for it to detonate in contact with the target vehicle. 

An illustration of how the Off-Route Mine works from a British Army manual

The mine had an effective range of between 70 to 80 metres and according to the 1977 French manual the projectile created by the detonation could travel up to 6km. In terms of the mine’s effectiveness the same manual states that 40m was the optimal range but no closer than 2m.

The manual also notes that “the slightest obstacle in the trajectory of the projectile (such as earth or shrubs) considerably reduces performance.” The diagram below from a 1977 French Army manual shows the effect of the mine on 70mm of armour at 40m, with 0-degrees of angle.

Effect diagram from 1977 French Army manual

When detonated the mine could throw fragments in a radius of 100m and could throw armour shards from a successful strike up to 200m from the target. The British mines came in the L27A1 kit which included a pair of the L14A1 off-route mines as well as instructions, the break wires, a night sighting tool, and an adjustable stand for mounting.

The mine’s electorally-powered detonator was powered by D cell batteries, which Sappers complained had to be frequently changed. The mine itself weighed 12kg and was packed with just over 6kg of Hexolite explosive. There was also a training version, the L28A1, which fired a paint-filled sponge to mark the side of the vehicle and confirm a hit. 

A Sapper setting up an Off-Route Mine (IWM)

The Miacah F1 was removed from French service in 2001. An improved version, the F2, was manufactured in 1996 and used by the French until the mines were withdrawn in 2004 due to corrosion. While some mines may have remained in stores, as some have been seen as late as 2016, they contravened the 1997 Ottawa Treaty on anti-personnel mines because the break wire could in theory be tripped by a human rather than a vehicle.

It was replaced in British service by the ARGES off-round Anti-Tank Mine which fired a modified 94mm rocket with a tandem HEAT warhead. In 1997 it was reported that 4870 Off-Route mines were held by British Army stores, in line with the Ottawa Treaty this had been reduced to 0 by 1999.


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

Landmine Monitor Report, 2004, Landmine & Cluster Munition Monitor, (source)
Landmine Monitor Report, 2000, Landmine & Cluster Munition Monitor, (source)
CNEMA Report, 2000 (source)
British Army User Handbook, Mine Anti-Tank Kit L27A1 (Off Route Mine), 1980
French Army MIACAH F1 Manual, 1977

Footage:

Fighting In Woods, British Army training film, 1982, (held by the IWM, DRA 1472)
Fighting In Villages, British Army training film, 1979, (held by the IWM, DRA 1401)

Malta’s Service Rifle: The AK

A comment in my recent video about the Royal Bermuda Regiment’s use of the Mini-14 sparked my interest. It noted that Malta, another small island military, uses the AK. I wasn’t aware of this so I decided to do some research.  

Malta’s military, known as the Armed Forces of Malta (AFM) is roughly the size of a brigade. In recent years the Armed Forces of Malta have had a strength of between 1,600 and 1,800 personnel. It has three battalions a maritime squadron and an air wing. Malta is a neutral nation and as such the AFM’s role is territorial defence, internal security and border control.

Malta gained independence from the UK in 1964 and became a republic in 1974, this is when the AFM was founded. With the former link to the UK much of the AFM’s initial equipment was of British origin and the 7.62×51mm L1A1 Self-Loading Rifle was used as the AFM’s service rifle for many years this appears to have changed in the late 1970s early 1980s. The FN FAL-derrived L1A1 is still used as the AFM’s standard drill and parade rifle.

AFM personnel with Type 56/II AK-pattern rifles (AFM)

The AFM celebrated its 50th anniversary in 2020 and shared this time line of their uniform and equipment in their service magazine On Parade which gives us some idea of how their small arms changed over time. We can see that the AK-pattern rifles have been in service since at least the 1980s. 

The AFM’s website lists their small arms with personnel being armed with Beretta 92s, a variety of HK MP5s, and what they describe as the ‘AK 47 Variant’. The site lists the rifles as being manufactured by Russia, Romania, China and East Germany. These rifles are all chambered in the 7.62×39mm cartridge.

Where the first AK-pattern rifles came from is unclear, although one source suggests the German and Romanian rifles were bought second hand in the 1990s. From a survey of images and video shared by the AFM in recent years it appears that East German MPiKMS, Romanian PM md.63, North Korean Type 68 and Chinese Type 56/II are in service.

AFM recruits training with Chinese Type 56/II AKs (AFM)

The origins of the Chinese rifles is easy to trace back to a 2003 donation of small arms and light weapons made by the People’s Republic of China. An agreement was signed with China in June 2001 and as part of this a donation of 150,000 Maltese lira-worth of weapons. By 2003, however, it was reported by the Time of Malta that this had increased to 500,000 Maltese lira-worth of weapons. This included Type 56/II rifles, Type 80 general purpose machine guns and RPG-7 clones. The AFM’s acting commander Colonel Carmel Vassallo described the donation as a “dream come true” at the time. It reportedly allowed the entire AFM to be armed with a single type of service rifle.

The reasoning behind the adoption no doubt comes down to financing, Malta being a small island nation does not have an extensive defence budget, reported at 54 million Euros in 2020, and perhaps have chosen to prioritise personnel and procurement of naval and aviation assets over small arms. It is easy to see how the donation of service rifles and other small arms would be welcomed when balancing a modest budget.

AFM personnel with modified AKs (AFM)

Over the last 10 years there have been a number of photos and videos released showing AKs which have been upgraded with some aftermarket modifications. The mods appear to predominantly be sourced from FAB Defense – with their CAA Polymer buttstock and VFR-AK railed forend with a top rail which extends over the top of the receiver cover. This provides the bare bones AKs with some modularity. It’s unclear how widely issued the modified AKs are but from officially release imagery it seems that the basic AK-pattern rifles are more prevalent. In recent years Malta has stood up quick reaction forces and it appears from videos and images shared of the company that they have been equipped with SIG Sauer MCX rifles. 


If you enjoyed this video and article please consider supporting our work here. We have some great perks available for Patreon Supporters – including custom stickers and early access to videos! Thank you for your support!


Bibliography:

‘AK Variant’, Armed Forces of Malta, (source)

‘AFM sees its dream come true’, Times of Malta, (source)

‘The Historical Timeline of Our Uniform’, On Parade 2020, (source)

“The Budget Speech 2020”, Malta Government, (source)

‘Personnel reveal shortcomings inside Maltese armed forces’, Malta Today, (source)

‘China donates 50 sub-machine guns to Malta, including 10 low-light scopes’, Malta Independent, (source)

Footage:

Various released videos, Armed Forces of Malta, (source)

‘Armed Forces of Malta: Recruit Intakes Nos. 131’, Michael Formosa, (source)